МРТ-признаки поражения головного мозга при артериальной гипертензии
https://doi.org/10.37586/2686-8636-2-2024-117-123
Аннотация
Представлен обзор литературы о сосудистых изменениях в головном мозге при артериальной гипертензии, регистрируемых с помощью магнитно-резонансной томографии (МРТ). К ним относятся гиперинтенсивные изменения белого вещества (ГИБВ), лакунарные инфаркты, церебральные микрокровоизлияния, расширение периваскулярных пространств и атрофические изменения отделов ГМ. Микроструктурные изменения проводящих путей белого вещества головного мозга появляются до ГИБВ и могут быть оценены с помощью диффузионновзвешенной МРТ (ДВ МРТ). Один из оцениваемых при этом параметров — коэффициент фракционной анизотропии (ФА) — служит предиктором поражения белого вещества на ранних стадиях АГ.
Об авторах
О. Ю. ИсайкинаРоссия
Исайкина Олеся Юрьевна, канд. мед. наук, ведущий научный сотрудник лаборатории применения амбулаторных диагностических методов в профилактике хронических неинфекционных заболеваний в системе здравоохранения
Москва
К. А. Вехова
Россия
Вехова Ксения Андреевна, студент Института клинической медицины им. Н. В. Склифосовского
Москва
А. С. Суховольская
Россия
Суховольская Анастасия Сергеевна, студент
Новосибирск
П. А. Черноусов
Россия
Черноусов Павел Андреевич, аспирант кафедры нервных болезней и нейрохирургии Института клинической медицины им. Н. В. Склифосовского
Москва
Е. М. Перепелова
Россия
Перепелова Елена Михайловна, канд. мед. наук, заведующая Отделением лучевой диагностики Клиники нервных болезней им. А. Я. Кожевникова
Москва
В. М. Горбунов
Россия
Горбунов Владимир Михайлович, д-р мед. наук, профессор, руководитель лаборатории амбулаторных диагностических методов в профилактике хронических неинфекционных заболеваний
Москва
Список литературы
1. Баланова Ю.А., Шальнова С.А., Куценко В.А., Имаева А.Э., Капустина А.В., Муромцева Г.А., Евстифеева С.Е., Максимов С.А., Бойцов С.А., Драпкина О.М. от имени участников исследования ЭССЕ-РФ. Популяционные аспекты терапии артериальной гипертензии. Фокус на фиксированные комбинации. // Артериальная гипертензия. — 2022. — Т. 28. — № 5. — С. 482–491.https://doi.org/10.18705/1607-419X-2022-28-5-482-491
2. Kearney-Schwartz A, Rossignol P, Bracard S, et al. Vascular structure and function is correlated to cognitive performance and white matter hyperintensities in older hypertensive patients with subjective memory complaints. Stroke. 2009;40(4):1229-1236. doi: 10.1161/STROKEAHA.108.532853
3. Mahinrad S, Sorond FA, Gorelick PB. Hypertension and cognitive dysfunction: a review of mechanisms, life-course observational studies and clinical trial results. Rev Cardiovasc Med. 2021;22(4):1429-1449. doi: 10.31083/j.rcm2204148
4. Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12(8):822838. doi:10.1016/S1474-4422(13)70124-8
5. Duering M, Biessels GJ, Brodtmann A, et al. Neuroimaging standards for research into small vessel disease-advances since 2013 [published correction appears in Lancet Neurol. 2023 Sep;22(9):e10] [published correction appears in Lancet Neurol. 2023 Sep;22(9):e10]. Lancet Neurol. 2023;22(7):602-618. doi:10.1016/S1474-4422(23)00131-X
6. Staals J, Booth T, Morris Z, et al. Total MRI load of cerebral small vessel disease and cognitive ability in older people. Neurobiol Aging. 2015;36(10):2806-2811. doi: 10.1016/j.neurobiolaging.2015.06.024
7. Jokinen H, Koikkalainen J, Laakso HM, et al. Global Burden of Small Vessel Disease-Related Brain Changes on MRI Predicts Cognitive and Functional Decline. Stroke. 2020;51(1):170-178. doi: 10.1161/STROKEAHA.119.026170
8. Vernooij MW, Ikram MA, Tanghe HL, et al. Incidental findings on brain MRI in the general population. N Engl J Med. 2007;357(18):1821-1828. doi: 10.1056/NEJMoa070972
9. Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12(8):822-838. doi: 10.1016/S1474-4422(13)70124-8
10. Prins ND, Scheltens P. White matter hyperintensities, cognitive impairment and dementia: an update. Nat Rev Neurol. 2015;11(3):157-165. doi: 10.1038/nrneurol.2015.10
11. Wahlund LO, Barkhof F, Fazekas F, et al. A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke. 2001;32(6):1318-1322. doi: 10.1161/01.str.32.6.1318
12. Charidimou A, Boulouis G, Haley K, et al. White matter hyperintensity patterns in cerebral amyloid angiopathy and hypertensive arteriopathy. Neurology. 2016;86(6):505-511. doi: 10.1212/WNL.0000000000002362
13. Fazekas F, Chawluk JB, Alavi A et al. MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. AJR Am J Roentgenol. 1987;149 (2): 351-6. doi:10.2214/ajr.149.2.351
14. Lampe L, Kharabian-Masouleh S, Kynast J, et al. Lesion location matters: The relationships between white matter hyperintensities on cognition in the healthy elderly. J Cereb Blood Flow Metab. 2019;39(1):36-43. doi: 10.1177/0271678X17740501
15. Smith EE, Salat DH, Jeng J, et al. Correlations between MRI white matter lesion location and executive function and episodic memory. Neurology. 2011;76(17):1492-1499. doi: 10.1212/WNL.0b013e318217e7c8
16. Fisher CM. Lacunes: small, deep cerebral infarcts. Neurology. 1965;15:774-784. doi: 10.1212/wnl.15.8.774
17. Fisher CM. The arterial lesions underlying lacunes. Acta Neuropathol. 1968;12(1):1-15. doi: 10.1007/BF00685305
18. Fisher CM. Lacunar strokes and infarcts: a review. Neurology. 1982;32(8):871-876. doi: 10.1212/wnl.32.8.871
19. Ungvari Z, Toth P, Tarantini S, et al. Hypertensioninduced cognitive impairment: from pathophysiology to public health. Nat Rev Nephrol. 2021;17(10):639-654. doi:10.1038/s41581-021-00430-6
20. Vermeer SE, Longstreth WT Jr, Koudstaal PJ. Silent brain infarcts: a systematic review. Lancet Neurol. 2007;6(7):611-619. doi: 10.1016/S1474-4422(07)70170-9
21. Geerlings MI, Appelman AP, Vincken KL, Mali WP, van der Graaf Y; SMART Study Group. Association of white matter lesions and lacunar infarcts with executive functioning: the SMART-MR study. Am J Epidemiol. 2009;170(9):1147-1155. doi: 10.1093/aje/kwp256
22. Jorgensen DR, Shaaban CE, Wiley CA, Gianaros PJ, Mettenburg J, Rosano C. A population neuroscience approach to the study of cerebral small vessel disease in midlife and late life: an invited review. Am J Physiol Heart Circ Physiol. 2018;314(6):H1117-H1136. doi: 10.1152/ajpheart.00535.2017
23. Ungvari Z, Tarantini S, Kirkpatrick AC, Csiszar A, Prodan CI. Cerebral microhemorrhages: mechanisms, consequences, and prevention. Am J Physiol Heart Circ Physiol. 2017;312(6):H1128-H1143. doi: 10.1152/ajpheart.00780.2016
24. Petrea RE, O'Donnell A, Beiser AS, et al. Mid to Late Life Hypertension Trends and Cerebral Small Vessel Disease in the Framingham Heart Study. Hypertension. 2020;76(3):707-714. doi: 10.1161/HYPERTENSIONAHA.120.15073
25. Toth P, Tarantini S, Springo Z, et al. Aging exacerbates hypertension-induced cerebral microhemorrhages in mice: role of resveratrol treatment in vasoprotection. Aging Cell. 2015;14(3):400-408. doi: 10.1111/acel.12315
26. Haller S, Vernooij MW, Kuijer JPA, Larsson EM, Jäger HR, Barkhof F. Cerebral Microbleeds: Imaging and Clinical Significance. Radiology. 2018;287(1):11-28. doi: 10.1148/radiol.2018170803
27. Poels MM, Vernooij MW, Ikram MA, et al. Prevalence and risk factors of cerebral microbleeds: an update of the Rotterdam scan study. Stroke. 2010;41(10 Suppl):S103-S106. doi: 10.1161/STROKEAHA.110.595181
28. Akoudad S, de Groot M, Koudstaal PJ, et al. Cerebral microbleeds are related to loss of white matter structural integrity. Neurology. 2013;81(22):1930-1937. doi: 10.1212/01.wnl.0000436609.20587.65
29. Yakushiji Y, Nishiyama M, Yakushiji S, et al. Brain microbleeds and global cognitive function in adults without neurological disorder. Stroke. 2008;39(12):3323-3328. doi: 10.1161/STROKEAHA.108.516112
30. Zheng H, Yuan Y, Zhang Z, Zhang J. Analysis of Risk Factors for Cerebral Microbleeds and the Relationship between Cerebral Microbleeds and Cognitive Impairment. Brain Sci. 2022;12(11):1445. doi: 10.3390/brainsci12111445
31. Zhang J, Liu L, Sun H, et al. Cerebral Microbleeds Are Associated With Mild Cognitive Impairment in Patients With Hypertension. J Am Heart Assoc. 2018;7(11):e008453. doi: 10.1161/JAHA.117.008453
32. Kwee RM, Kwee TC. Virchow-Robin spaces at MR imaging. Radiographics. 2007;27(4):1071-1086. doi: 10.1148/rg.274065722
33. Mestre H, Kostrikov S, Mehta RI, Nedergaard M. Perivascular spaces, glymphatic dysfunction, and small vessel disease. Clin Sci (Lond). 2017;131(17):2257-2274. doi: 10.1042/CS20160381
34. Duperron MG, Tzourio C, Sargurupremraj M, et al. Burden of Dilated Perivascular Spaces, an Emerging Marker of Cerebral Small Vessel Disease, Is Highly Heritable. Stroke. 2018;49(2):282-287. doi: 10.1161/STROKEAHA.117.019309
35. Zhu YC, Tzourio C, Soumaré A, Mazoyer B, Dufouil C, Chabriat H. Severity of dilated Virchow-Robin spaces is associated with age, blood pressure, and MRI markers of small vessel disease: a population-based study. Stroke. 2010;41(11):2483-2490. doi: 10.1161/STROKEAHA.110.591586
36. Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging [published correction appears in Lancet Neurol. 2013 Jun;12(6):532]. Lancet Neurol. 2013;12(5):483-497. doi: 10.1016/S1474-4422(13)70060-7
37. Ramirez J, Berezuk C, McNeely AA, Scott CJ, Gao F, Black SE. Visible Virchow-Robin spaces on magnetic resonance imaging of Alzheimer's disease patients and normal elderly from the Sunnybrook Dementia Study. J Alzheimers Dis. 2015;43(2):415-424. doi: 10.3233/JAD-132528
38. Geurts LJ, Zwanenburg JJM, Klijn CJM, Luijten PR, Biessels GJ. Higher Pulsatility in Cerebral Perforating Arteries in Patients With Small Vessel Disease Related Stroke, a 7T MRI Study. Stroke. 2019;50(1):62-68. doi: 10.1161/STROKEAHA.118.022516
39. Kaushik S, Vani K, Chumber S, Anand KS, Dhamija RK. Evaluation of MR Visual Rating Scales in Major Forms of Dementia. J Neurosci Rural Pract. 2021;12(1):16-23. doi: 10.1055/s-0040-1716806
40. Goukasian N, Porat S, Blanken A, et al. Cognitive Correlates of Hippocampal Atrophy and Ventricular Enlargement in Adults with or without Mild Cognitive Impairment. Dement Geriatr Cogn Dis Extra. 2019;9(2):281-293. doi: 10.1159/000490044
41. Karas G, Scheltens P, Rombouts S, et al. Precuneus atrophy in early-onset Alzheimer's disease: a morphometric structural MRI study. Neuroradiology. 2007;49(12):967-976. doi: 10.1007/ s00234-007-0269-2
42. Jacobs HI, Van Boxtel MP, Uylings HB, Gronenschild EH, Verhey FR, Jolles J. Atrophy of the parietal lobe in preclinical dementia. Brain Cogn. 2011;75(2):154-163. doi: 10.1016/j.bandc.2010.11.003
43. Bowman GL, Dayon L, Kirkland R, et al. Blood-brain barrier breakdown, neuroinflammation, and cognitive decline in older adults [published correction appears in Alzheimers Dement. 2019 Feb;15(2):319]. Alzheimers Dement. 2018;14(12):1640-1650. doi: 10.1016/j.jalz.2018.06.2857
44. Rodrigue KM, Rieck JR, Kennedy KM, Devous MD Sr, DiazArrastia R, Park DC. Risk factors for β-amyloid deposition in healthy aging: vascular and genetic effects. JAMA Neurol. 2013;70(5):600606. doi: 10.1001/jamaneurol.2013.1342
45. Nation DA, Preis SR, Beiser A, et al. Pulse Pressure Is Associated With Early Brain Atrophy and Cognitive Decline: Modifying Effects of APOE-β4. Alzheimer Dis Assoc Disord. 2016;30(3):210-215. doi: 10.1097/WAD.0000000000000127
46. Kooistra M, Geerlings MI, van der Graaf Y, et al. Vascular brain lesions, brain atrophy, and cognitive decline. The Second Manifestations of ARTerial disease--Magnetic Resonance (SMARTMR) study. Neurobiol Aging. 2014;35(1):35-41. doi: 10.1016/j.neurobiolaging.2013.07.004
47. Wong FC, Kim EE. A review of molecular imaging studies reaching the clinical stage. Eur J Radiol. 2009;70(2):205-211. doi:10.1016/j.ejrad.2009.01.049
48. Maillard P, Carmichael O, Harvey D, et al. FLAIR and diffusion MRI signals are independent predictors of white matter hyperintensities. AJNR Am J Neuroradiol. 2013;34(1):54-61. doi: 10.3174/ajnr.A3146
49. Zhang Y, Schuff N, Camacho M, et al. MRI markers for mild cognitive impairment: comparisons between white matter integrity and gray matter volume measurements. PLoS One. 2013;8(6):e66367. doi: 10.1371/journal.pone.0066367
50. Papma JM, de Groot M, de Koning I, et al. Cerebral small vessel disease affects white matter microstructure in mild cognitive impairment. Hum Brain Mapp. 2014;35(6):2836-2851. doi: 10.1002/hbm.22370
51. Launer LJ, Lewis CE, Schreiner PJ, et al. Vascular factors and multiple measures of early brain health: CARDIA brain MRI study. PLoS One. 2015;10(3):e0122138. doi: 10.1371/journal.pone.0122138
52. Парфенов В.А., Остроумова Т.М., Остроумова О.Д. и др. Диффузионно-тензорная магнитно-резонансная томография в диагностике поражения белого вещества головного мозга у пациентов среднего возраста с неосложненной эссенциальной артериальной гипертензией. // Неврология, нейропсихиатрия, психосоматика. — 2018. — Т. 10. — № 2. — С. 20–26. 2018;10(2):20–26. https://doi.org/10.14412/2074-2711-2018-2-20-26
Рецензия
Для цитирования:
Исайкина О.Ю., Вехова К.А., Суховольская А.С., Черноусов П.А., Перепелова Е.М., Горбунов В.М. МРТ-признаки поражения головного мозга при артериальной гипертензии. Российский журнал гериатрической медицины. 2024;(2):117-123. https://doi.org/10.37586/2686-8636-2-2024-117-123
For citation:
Isaykina O.Yu., Vekhova K.A., Sukhovolskaya A.S., Chernousov P.A., Perepelova E.M., Gorbunov M.V. MRI Signs of Brain Damage in Arterial Hypertension. Russian Journal of Geriatric Medicine. 2024;(2):117-123. (In Russ.) https://doi.org/10.37586/2686-8636-2-2024-117-123