Preview

Russian Journal of Geriatric Medicine

Advanced search

Diagnosis of Locomotive Syndrome in Osteoarthritis in Elderly and Senile Individuals: Literature Review

https://doi.org/10.37586/2686-8636-4-2025-538-545

Abstract

Disorders of the musculoskeletal system pose a major medical and social problem for older people. The clinical phenomenon of locomotive syndrome (LS) is observed in senile asthenia (SA) and is a key feature of degenerative and inflammatory joint diseases. This article is a critical analysis of the literature on LS from the perspective of geriatrics and arthrology. It highlights that traditional methods for diagnosing joint diseases don't fully consider a key clinical and prognostic aspect: the patient's actual physical abilities, which directly affect their quality of life and level of independence. Currently, there is a growing need to develop comprehensive clinical assessment methods focused on functional indicators and early detection of joint diseases in elderly patients with osteoarthritis (OA) and SA.

Objective of the review. Critical analysis of existing approaches to the diagnosis of sarcopenia in elderly patients with osteoarthritis and to identifying directions for future research.

About the Authors

M. M. Ivaniuk
Hospital for War Veterans
Russian Federation

Ivaniuk Mariia Mikhailovna

Vladivostok



M. A. Kabalyk
Hospital for War Veterans; Pacific State Medical University
Russian Federation

Vladivostok



P. V. Gorokhovskaya
Hospital for War Veterans
Russian Federation

Vladivostok



N. G. Plekhova
Pacific State Medical University
Russian Federation

Vladivostok



O. Y. Ageeva
Hospital for War Veterans
Russian Federation

Vladivostok



References

1. Yao Q., Wu X., Tao C., et al. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther. 2023 ; 8 (1) : 56. doi: 10.1038/s41392-023-01330-w.

2. Wakale S., Wu X., Sonar Y., et al. How are Aging and Osteoarthritis Related? Aging Dis. 2023 ; 14 (3) : 592–604. doi: 10.14336/AD.2022.0831.

3. GBD 2021 Osteoarthritis Collaborators. Global, regional, and national burden of osteoarthritis, 1990–2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023 ; 5 (9) : e508–e522. doi: 10.1016/S2665-9913(23)00163-7.

4. Atasoy-Zeybek A., Showel K. K., Nagelli C. V., et al. The intersection of aging and estrogen in osteoarthritis. NPJ Womens Health. 2025 ; 3 (1) : 15. doi: 10.1038/s44294-025-00063-1.

5. Diekman B. O., Loeser R. F. Aging and the emerging role of cellular senescence in osteoarthritis. Osteoarthritis Cartilage. 2024 ; 32 (4) : 365–371. doi: 10.1016/j.joca.2023.11.018.

6. Liu S., Zhang G., Li N., Wang Z., Lu L. The Interplay of Aging and PANoptosis in Osteoarthritis Pathogenesis: Implications for Novel Therapeutic Strategies. J Inflamm Res. 2025 ; 18 : 1951–1967. doi: 10.2147/JIR.S489613.

7. Conaghan P., Abraham L., Graham-Clarke E., et al. Fri0396 How does osteoarthritis pain impact function, mobility and requirement for help in daily activities in European patients? Ann Rheum Dis. 2020 ; 79 (Suppl 1) : 796. doi: 10.1136/annrheumdis-2020-eular.5341.

8. Sonobe T., Otani K., Sekiguchi M., et al. Radiographic knee osteoarthritis severity has no impact on fall risk: the locomotive syndrome and health outcomes in the aizu cohort study (LOHAS): a cross-sectional study. BMC Musculoskelet Disord. 2024 ; 25 (1) : 298. doi: 10.1186/s12891-024-07421-1.

9. Olsen U., Sellevold V. B., Gay C.L., et al. Factors associated with pain and functional impairment five years after total knee arthroplasty: a prospective observational study. BMC Musculoskelet Disord. 2024 ; 25 (1) : 22. doi: 10.1186/s12891-023-07125-y.

10. Stratford P. W., Kennedy D. M. Does parallel item content on WOMAC's pain and function subscales limit its ability to detect change in functional status? BMC Musculoskelet Disord. 2004 ; 5 : 17. doi: 10.1186/1471-2474-5-17.

11. Tolk J. J., Janssen R. P. A., Prinsen C. A. C., et al. The OARSI core set of performance-based measures for knee osteoarthritis is reliable but not valid and responsive. Knee Surg Sports Traumatol Arthrosc. 2019 ; 27 (9) : 2898–2909. doi: 10.1007/s00167-017-4789-y.

12. Lee S. H., Kao C. C., Liang H. W., et al. Validity of the Osteoarthritis Research Society International (OARSI) recommended performance-based tests of physical function in individuals with symptomatic Kellgren and Lawrence grade 0–2 knee osteoarthritis. BMC Musculoskelet Disord. 2022 ; 23 (1) : 1040. doi: 10.1186/s12891-022-06012-2.

13. Wolfe F., Kong S.X. Rasch analysis of the Western Ontario MacMaster questionnaire (WOMAC) in 2205 patients with osteoarthritis, rheumatoid arthritis, and fibromyalgia. Ann Rheum Dis. 1999 ; 58 (9) : 563–568. doi: 10.1136/ard.58.9.563.

14. Safaa A. Mahran, Amro Y. Elias, Fadwa S. Janbi, et al. Relationship Between Clinical and Radiographic Findings in Osteoarthritis Knee: A Cross-Sectional Study. JKAU Med Sci. 2023 ; 22 (2) : 1–9. doi: 10.4197/Med.22-2.1.

15. Negishi Y., Kaneko H., Aoki T., et al. Medial meniscus extrusion is invariably observed and consistent with tibial osteophyte width in elderly populations: The Bunkyo Health Study. Sci Rep. 2023 ; 13 (1) : 22805. doi: 10.1038/s41598-023-49868-7.

16. Sonobe T., Otani K., Sekiguchi M., Otoshi K., Nikaido T., Konno S., Matsumoto Y. Influence of Knee Osteoarthritis Severity, Knee Pain, and Depression on Physical Function: A Cross-Sectional Study. Clin Interv Aging. 2024 ; 19 : 1653–1662. doi: 10.2147/CIA.S470473.

17. Anees N., Saeed A., Riaz H., Khan F. M. Association of locomotive syndrome risk with knee osteoarthritis. RMJ. 2020 ; 45 (4) : 846–849.

18. Konishi Y., Yoshii R., Ingersoll C. D. Gamma Loop Dysfunction as a Possible Neurophysiological Mechanism of Arthrogenic Muscle Inhibition: A Narrative Review of the Literature. J Sport Rehabil. 2022 ; 31 (6) : 736–741. doi: 10.1123/jsr.2021-0232.

19. Bridges S. L. Jr, Sun D., Graham Z. A., et al. Muscle Inflammation Susceptibility: A Potential Phenotype for Guiding Precision Rehabilitation After Total Hip Arthroplasty in End-Stage Osteoarthritis. HSS J. 2023 ; 19 (4) : 453–458. doi: 10.1177/15563316231190402.

20. Imagama S., Ando K., Kobayashi K., et al. Musculoskeletal Factors and Geriatric Syndromes Related to the Absence of Musculoskeletal Degenerative Disease in Elderly People Aged over 70Years. Biomed Res Int. 2019 ; 2019 : 7097652. doi: 10.1155/2019/7097652.

21. Ikemoto T., Arai Y. C. Locomotive syndrome: clinical perspectives. Clin Interv Aging. 2018 ; 13 : 819–827. doi: 10.2147/CIA.S148683.

22. Wan M., Gray-Gaillard E. F., Elisseeff J. H. Cellular senescence in musculoskeletal homeostasis, diseases, and regeneration. Bone Res. 2021 ; 9 (1) : 41. doi: 10.1038/s41413-021-00164-y.

23. Lee D. Y., Bahar M. E., Kim C. W., et al: A Double-Edged Sword in Cartilage Aging and Mechanical Stress Response: A Systematic Review. J Clin Med. 2024 ; 13 (10) : 3005. doi: 10.3390/jcm13103005.

24. Cornish S. M., Cordingley D. M. Inflammatory pathway communication with skeletal muscle-Does aging play a role? A topical review of the current evidence. Physiol Rep. 2024 ; 12 (11) : e16098. doi: 10.14814/phy2.16098.

25. Morita Y., Ito H., Kawaguchi S., et al. Systemic chronic diseases coexist with and affect locomotive syndrome: The Nagahama Study. Mod Rheumatol. 2023 ; 33 (3) : 608–616. doi: 10.1093/mr/roac039.

26. Inui K., Maeda S., Yamada S., et al. Knee joint dysfunction in the patients immediately before arthroplasty was well reflected by locomotive syndrome, not physical frailty. Mod Rheumatol. 2025;35(3):579-584. doi: 10.1093/mr/ roae093.

27. Dyer J., Davison G., Marcora S. M., et al. Effect of a Mediterranean Type Diet on Inflammatory and Cartilage Degradation Biomarkers in Patients with Osteoarthritis. J Nutr Health Aging. 2017 ; 21 (5) : 562–566. doi: 10.1007/ s12603-016-0806-y.

28. Ogata T., Yamada K., Miura H., et al. Feasibility and applicability of locomotive syndrome risk test in elderly patients who underwent total knee arthroplasty. Mod Rheumatol. 2023 ; 33 (6) : 1197–1203. doi: 10.1093/mr/roac131.

29. Nakahara E., Iidaka T., Chiba A., et al. Identifying factors associated with locomotive syndrome using machine learning methods: The third survey of the research on osteoarthritis/ osteoporosis against disability study. Geriatr Gerontol Int. 2024 ; 24 (8) : 806–813. doi: 10.1111/ggi.14923.

30. Kobayashi T., Morimoto T., Otani K., Mawatari M. Locomotive Syndrome and Lumbar Spine Disease: A Systematic Review. J Clin Med. 2022 ; 11 (5) : 1304. doi: 10.3390/ jcm11051304.

31. Ohsawa T., Yanagisawa S., Shiozawa H., et al. Relationship between knee osteoarthritis and the locomotive syndrome risk tests: A cross-sectional study. J Orthop Sci. 2016 ; 21 (4) : 512–516. doi: 10.1016/j.jos.2016.03.011.

32. Taniguchi N., Jinno T., Ohba T., et al. Differences of 2-year longitudinal changes of locomotive syndrome among patients treated with thoracolumbar interbody fusion, total hip arthroplasty, and total knee arthroplasty for degenerative diseases. Mod Rheumatol. 2022 ; 32 (3) : 641–649. doi: 10.1093/mr/roab033.

33. Miyazaki S., Fujii Y., Tsuruta K., et al. Spatiotemporal gait characteristics post-total hip arthroplasty and its impact on locomotive syndrome: a before-after comparative study in hip osteoarthritis patients. PeerJ. 2024 ; 12 : e18351. doi: 10.7717/peerj.18351.

34. Miyazaki S., Tsuruta K., Yoshinaga S., et al. Investigation of locomotive syndrome improvement by total hip arthroplasty in patients with hip osteoarthritis: A before-after comparative study focusing on 25-question geriatric locomotive function scale. PLoS One. 2024 ; 19 (6) : e0315353. doi: 10.1371/journal.pone.0315353.

35. Kato S., Kurokawa Y., Kabata T., et al. Improvement of locomotive syndrome with surgical treatment in patients with degenerative diseases in the lumbar spine and lower extremities: a prospective cohort study. BMC Musculoskelet Disord. 2020 ; 21 (1) : 515. doi: 10.1186/s12891-020-03547-0.

36. Miyazaki S., Yoshinaga S., Tsuruta K., et al. Total Knee Arthroplasty Improved Locomotive Syndrome in Knee Osteoarthritis Patients: A Prospective Cohort Study Focused on Total Clinical Decision Limits Stage 3. Biomed Res Int. 2021 ; 2021 : 3919989. doi: 10.1155/2021/3919989.

37. Taniguchi N., Jinno T., Ohba T., et al. Differences of 2-year longitudinal changes of locomotive syndrome among patients treated with thoracolumbar interbody fusion, total hip arthroplasty, and total knee arthroplasty for degenerative diseases. Mod Rheumatol. 2022 ; 32 (3) : 641–649. doi: 10.1093/mr/roab033.

38. Kobayashi T., Morimoto T., Shimanoe C., Ono R., Otani K., Mawatari M. Clinical characteristics of locomotive syndrome categorised by the 25-question Geriatric Locomotive Function Scale: a systematic review. BMJ Open. 2023 ; 13 (5) : e068645. doi: 10.1136/bmjopen-2022-068645.

39. Kato S., Demura S., Kabata T., et al. Evaluation of locomotive syndrome in patients receiving surgical treatment for degenerative musculoskeletal diseases: A multicentre prospective study using the new criteria. Mod Rheumatol. 2022 ; 32 (4) : 822–829. doi: 10.1093/mr/roab045.

40. Taniguchi N., Jinno T., Ohba T., et al. Differences of 2-year longitudinal changes of locomotive syndrome among patients treated with thoracolumbar interbody fusion, total hip arthroplasty, and total knee arthroplasty for degenerative diseases. Mod Rheumatol. 2022 ; 32 (3) : 641–649. doi: 10.1093/mr/roab033.


Supplementary files

Review

For citations:


Ivaniuk M.M., Kabalyk M.A., Gorokhovskaya P.V., Plekhova N.G., Ageeva O.Y. Diagnosis of Locomotive Syndrome in Osteoarthritis in Elderly and Senile Individuals: Literature Review. Russian Journal of Geriatric Medicine. 2025;(4):538-545. (In Russ.) https://doi.org/10.37586/2686-8636-4-2025-538-545

Views: 43


Creative Commons License
This work is licensed under a Creative Commons BY-NC-SA 4.0.


ISSN 2686-8636 (Print)
ISSN 2686-8709 (Online)