Preview

Russian Journal of Geriatric Medicine

Advanced search

Muscle metabolism in older adults

https://doi.org/10.37586/2686-8636-2-2022-96-102

Abstract

Sarcopenia is a generalized progressive skeletal muscle disease that is associated with an increased risk of disability and death due to falls and fractures. The article details current information about the age-related features of metabolism and muscle tissue remodeling, which lead to the development of sarcopenia and its further progression. The possibilities of correcting sarcopenia are presented: the mechanism of action of experimental drugs acting on muscle tissue (myostatin, bimagrumab, landogrosumab) and non-drug methods of correcting sarcopenia (nutrition, physical activity) that have proven the effectiveness of non-drug methods for correcting sarcopenia (nutrition, physical activity) are analyzed, and the possible effects of taking vitamin D preparations for patients with sarcopenia are described.

About the Authors

E. V. Ivannikova
Pirogov National Research Medical University, Russian Gerontology Research and Clinical Centre
Russian Federation

Moscow



E. N. Dudinskaya
Pirogov National Research Medical University, Russian Gerontology Research and Clinical Centre
Russian Federation

Moscow



Yu. S. Onuchina
Pirogov National Research Medical University, Russian Gerontology Research and Clinical Centre
Russian Federation

Moscow



References

1. Vollset S.E., Goren E., Yuan C.-W., et al. Fertility, mortality, migration, and population scenarios for 195 countries and territories from 2017 to 2100: A forecasting analysis for the Global Burden of Disease Study. Lancet 2020, 396, 1285–1306.

2. Руководство по клинической диетологии в гериатрии. Под ред. К.У. Бейлс, Д.Л. Локер, Э. Зальцмана; Пер. с англ.; Под ред. О.Н. Ткачевой. ГЭОТАР-Медиа, 2021 год, ISBN 978-5-9704-6464-9.

3. Fielding R.A., Vellas B., Evans W.J., Bhasin S., Morley J.E., Newman A.B., et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc. 2011;12(4):249–56.

4. Volpi E., Nazemi R., Fujita S. Muscle tissue changes with aging. Curr Opin Clin Nutr Metab Care. 2004;7(4):405–10.

5. Cruz-Jentoft A.J., Boirie Y., Cederholm T. et al. European Working Group on Sarcopenia in Older People. Report of the European Working Group on Sarcopenia in Older People. Sarcopenia: European consensus on definition and diagnosis // Age and Ageing. — 2010. — V. 39. — P. 412–423.

6. Cruz-Jentoft A.J. et al. Sarcopenia: revised European consensus on definition and diagnosis //Age and ageing. — 2019. — Т. 48. — №. 1. — С. 16–31.

7. George A. Is sarcopenia associated with an increased risk of all-cause mortality and functional disability? /A. George, A. Kelley, S. Kristi. / Kelley Experimental Gerontology. — 2017. — V.96. — P.100–103.

8. Beaudart C. et al. Quality of life and physical components linked to sarcopenia: the SarcoPhAge study //Experimental gerontology. — 2015. — Т. 69. — С. 103–110.

9. Glass D.J. Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nat Cell Biol. 2003; 5(2):87–90.

10. Campbell W.W. Synergistic use of higher-protein diets or nutritional supplements with resistance training to counter sarcopenia. Nutr Rev. 2007;65(9):416–22.

11. English K.L., Paddon-Jones D. Protecting muscle mass and function in older adults during bed rest. Curr Opin Clin Nutr Metab Care. 2010;13(1):34–9.

12. Koopman R. Dietary protein and exercise training in ageing. Proc Nutr Soc. 2011;70(1):104–13.

13. Vivanco I., Sawyers C.L. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2002; 2(7):489–501.

14. Rhoads R.E. Signal transduction pathways that regulate eukaryotic protein synthesis. J Biol Chem. 1999; 274(43):30337–40.

15. Gomes M.D., Lecker S.H., Jagoe R.T., Navon A., Goldberg A.L. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A. 2001;98(25):14440–5.

16. Arai A., Spencer J.A., Olson E.N. STARS, a striated muscle activator of Rho signaling and serum response factor-dependent transcription. J Biol Chem. 2002;277(27):24453–9.

17. Troidl K., Ruding I., Cai W.J., Mucke Y., Grossekettler L., Piotrowska I., et al. Actin-binding rho activating protein (Abra) is essential for fluid shear stress-induced arteriogenesis. Arterioscler Thromb Vasc Biol. 2009;29(12): 2093–101.

18. Fukuda T. Ratio of visceral-to-subcutaneous fat area predicts cardiovascular events in patients with type 2 diabetes / T. Fukuda, R. Bouchi, T. Takeuchi, Y. Nakano et al. // J Diabetes Investig. — 2018. — V.9. — P. 396–402.

19. Radic M. Autoimmune sarcopenia — current knowledge and perspective. WCO-IOF-ESCEO. World Congress on Osteoporosis, Osteoarthritis and Musculoskeletal Diseases; 2018 April 19–22, Krakow, Poland. Springer; 2018. р. 135.

20. Kalinkovich A., Livshits G., 2017. Sarcopenic obesity or obese sarcopenia: A cross talk between ageassociated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing research reviews 35, 200–221.

21. Evans W.J. Skeletal muscle loss: cachexia, sarcopenia, and inactivity. Am J Clin Nutr.2010;91(4):1123S–7.

22. von Haehling S., Morley J.E., Anker S.D. An overview of sarcopenia: facts and numbers on prevalence and clinical impact. J Cachexia Sarcopenia Muscle. 2010;1(2):129–33.

23. Conte M., Vasuri F., Bertaggia E., et al. Differential expression of perilipin 2 and 5 in human skeletal muscle during aging and their association with atrophy-related genes. Biogerontology 2015, 16, 329–340.

24. Conte M., Vasuri F., Trisolino, et al. Increased Plin2 expression in human skeletal muscle is associated with sarcopenia and muscle weakness. PLoS One 2013, 15; 8(8). DOI: 10.1371/journal.pone.0073709. PMID: 23977392; PMCID: PMC3744478.

25. Wiedmer P. et al. Sarcopenia–Molecular mechanisms and open questions //Ageing Research Reviews. — 2020. — С. 101200.

26. Leger B., Derave W., De Bock K., Hespel P., Russell A.P. Human sarcopenia reveals an increase in SOCS-3 and myostatin and a reduced efficiency of Akt phosphorylation. Rejuvenation Res. 2008;11(1):163–175B.

27. Cuthbertson D., Smith K., Babraj J., Leese G., Waddell T., Atherton P., et al. Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J. 2005;19(3):422–4.

28. Hornberger T.A., Stuppard R., Conley K.E., Fedele M.J., Fiorotto M.L., Chin E.R., et al. Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism. Biochem J. 2004;380(Pt 3):795–804.

29. Joseph G.A., Wang S.X., Jacobs C.E., et al. Partial Inhibition of mTORC1 in Aged Rats Counteracts the Decline in Muscle Mass and Reverses Molecular Signaling Associated with Sarcopenia. Mol. Cell. Biol. 2019;39:1–16. DOI: 10.1128/MCB.00141–19.

30. Sakuma K., Akiho M., Nakashima H., Akima H., Yasuhara M. Age-related reductions in expression of serum response factor and myocardin-related transcription factor A in mouse skeletal muscles. Biochim Biophys Acta. 2008;1782(7–8):453–61.

31. Mankhong S. et al. Experimental models of sarcopenia: bridging molecular mechanism and therapeutic strategy //Cells. — 2020. — Т. 9. — №. 6. — С. 1385.

32. Ali S., Garcia J.M. Sarcopenia, Cachexia and Aging: Diagnosis, Mechanisms and Therapeutic Options — A Mini-Review. Gerontology. 2014;60(4):294–305. DOI: 10.1159/000356760.

33. Sousa-Victor P., Gutarra S., García-Prat L., et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature. 2014;506:316–321. DOI: 10.1038/nature13013.

34. Baker D.J., Wijshake T., Tchkonia T., et al. Clearance of p16 Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011;479:232–236. DOI: 10.1038/nature10600.

35. Van Deursen J.M. The role of senescent cells in ageing. Nature. 2014;509:439–446. DOI: 10.1038/nature13193.

36. McHugh D., Gil J. Senescence and aging: Causes, consequences, and therapeutic avenues. J. Cell Biol. 2018;217:65– 77. DOI: 10.1083/jcb.201708092.

37. Bian A.L., Hu H.Y., Rong Y.D., et al. A study on relationship between elderly sarcopenia and inflammatory factors IL–6 and TNF-α Eur. J. Med. Res. 2017;22:1–8. DOI: 10.1186/s40001-017-0266-9.

38. Marzetti E., Picca A., Marini F., et al. Inflammatory signatures in older persons with physical frailty and sarcopenia: The frailty “cytokinome” at its core. Exp. Gerontol. 2019;122:129–138. DOI: 10.1016/j.exger.2019.04.019.

39. Pawlikowski B., Vogler T.O., Gadek K., Olwin B.B. Regulation of skeletal muscle stem cells by fibroblast growth factors. Dev. Dyn. 2017;246:359–367. DOI: 10.1002/dvdy.24495.

40. McKay B.R., Ogborn D.I., Bellamy L.M., Tarnopolsky M.A., Parise G. Myostatin is associated with age-related human muscle stem cell dysfunction. FASEB J. 2012;26:2509–2521.

41. Bentzinger C.F., Von Maltzahn J., Rudnicki M.A. Extrinsic regulation of satellite cell specification. Stem Cell Res. Ther. 2010;1:1–8. DOI: 10.1186/scrt27.

42. Kwak J.Y., Kwon K.-S. Pharmacological Interventions for Treatment of Sarcopenia: Current Status of Drug Development for Sarcopenia. Ann. Geriatr. Med. Res. 2019;23:98–104. DOI: 10.4235/agmr.19.0028.

43. Hardee J.P., Lynch G.S. Current pharmacotherapies for sarcopenia. Expert Opin. Pharmacother. 2019;20:1645–1657. DOI: 10.1080/14656566.2019.1622093.

44. Becker C., Lord S.R., Studenski S.A. et al. Myostatin antibody (LY2495655) in older weak fallers: A proof-of-concept, randomised, phase 2 trial. Lancet Diabetes Endocrinol. 2015;3:948–957. DOI: 10.1016/S2213–8587(15)00298–3.

45. Rooks D., Praestgaard J., Hariry S., et al. Treatment of Sarcopenia with Bimagrumab: Results from a Phase II, Randomized, Controlled, Proof-of-Concept Study. J. Am. Geriatr. Soc. 2017;65:1988–1995. DOI: 10.1111/jgs.14927.

46. Sullivan D.H. et al. Effects of muscle strength training and testosterone in frail elderly males //Medicine and science in sports and exercise. 2005. Т. 37, №. 10. P. 1664–1672.

47. Дедов И.И. и др. Рекомендации по диагностике и лечению дефицита тестостерона (гипогонадизма) у мужчин с сахарным диабетом //Ожирение и метаболизм. — 2017. — Т. 14. — №. 4.

48. Watson M.D., Cross B.L., Grosicki G.J. Evidence for the Contribution of Gut Microbiota to Age-Related Anabolic Resistance. Nutrients. 2021 Feb 23;13(2):706. DOI: 10.3390/nu13020706. PMID: 33672207; PMCID: PMC7926629.

49. De Sire R., Rizzatt, G., Ingravalle F., Pizzoferrato M., Petito V., Lopetuso L., Graziani C., De Sire A., Mentella M.C., Mele M.C., et al. Skeletal muscle-gut axis: Emerging mechanisms of sarcopenia for intestinal and extra intestinal diseases. Minerva Gastroenterol. Dietol. 2018, 64, 351–362.

50. Enoki Y., Watanabe H., Arake R., Sugimoto R., Imafuku T., Tominaga Y., Ishima Y., Kotani S., Nakajima M., Tanaka M., et al. Indoxyl sulfate potentiates skeletal muscle atrophy by inducing the oxidative stress-mediated expression of myostatin and atrogin-1. Sci. Rep. 2016, 6, 32084.

51. Wyczalkowska-Tomasik A., Czarkowska-Paczek B., Giebultowicz J., Wroczynski P., Paczek L. Age-dependent increase in serum levels of indoxyl sulphate and p-cresol sulphate is not related to their precursors: Tryptophan and tyrosine. Geriatr. Gerontol. Int. 2016, 17, 1022–1026.

52. Dallas D.C., Sanctuary M.R., Qu Y., Khajavi S.H., Van Zandt A.E., Dyandra M., Frese S.A., Barile D., German J.B. Personalizing protein nourishment. Crit. Rev. Food Sci. Nutr. 2017, 57, 3313–3331.

53. Picca A., Calvani R., Bossola M., et al. Update on mitochondria and muscle aging: all wrong roads lead to sarcopenia. Biol. Chem. 2018;399(5):421–436. DOI: 10.1515/hsz-2017–0331.

54. Welch A.A., Jennings A., Kelaiditi E., et al. Cross-Sectional Associations Between Dietary Antioxidant Vitamins C, E and Carotenoid Intakes and Sarcopenic Indices in Women Aged 18–79 Years. Calcif. Tissue Int. 2020;106:331–342. DOI: 10.1007/ s00223-019-00641-x.

55. Villani A., Wright H., Slater G., Buckley J. A randomised controlled intervention study investigating the efficacy of carotenoid-rich fruits and vegetables and extra-virgin olive oil on attenuating sarcopenic symptomology in overweight and obese older adults during energy intake restriction: Protocol paper. BMC Geriatr. 2018;18:2.

56. Woods J.L., Iuliano-Burns S., King S.J., Strauss B.J., Walker K.Z. Poor physical function in elderly women in low-level aged care is related to muscle strength rather than to measures of sarcopenia. Clin Interv Aging. 2011;6:67–76. DOI: 10.2147/ CIA.S16979. Epub 2011 Mar 23. PMID: 21472094; PMCID: PMC3066255.

57. Мокрышева Н.Г., Крупинова Ю.А., Володичева В.Л., Мирная С.С., Мельниченко Г.А. Саркопения глазами эндокринолога. Ожирение и метаболизм. 2018;15(3):21 27. https://doi.org/10.14341/omet9792

58. Verdijk L.B., Gleeson B.G., Jonkers R.A. M. et al. Skeletal muscle hypertrophy following resistance training is accompanied by a fiber type — specific increase in satellite cell content in elderly men. J. Gerontol. A: Biol. Sci. Med. Sci. 2009. Vol. 64, №3, Р. 332–339.

59. Древаль А.В. Физическая активность и сахарный диабет. — Aegitas, 2022.

60. Liu C.J., Latham N.K. Progressive resistance strength training for improving physical function in older adults. Cochrane Database Syst Rev. 2009 Jul 8;2009(3):CD002759. DOI: 10.1002/14651858. CD002759.pub2. PMID: 19588334; PMCID: PMC4324332.

61. Phillips S.M. Nutrient-rich meat proteins in offsetting agerelated muscle loss. Meat Sci. 2012;92(3):174–8.

62. Yang Y., Breen L., Burd N.A., et al. Resistance exercise enhances myofibrillar protein synthesis with graded intakes of whey protein in older men. Br J Nutr. 2012;108:1780.


Review

For citations:


Ivannikova E.V., Dudinskaya E.N., Onuchina Yu.S. Muscle metabolism in older adults. Russian Journal of Geriatric Medicine. 2022;(2):96-102. (In Russ.) https://doi.org/10.37586/2686-8636-2-2022-96-102

Views: 9698


Creative Commons License
This work is licensed under a Creative Commons BY-NC-SA 4.0.


ISSN 2686-8636 (Print)
ISSN 2686-8709 (Online)