Preview

Russian Journal of Geriatric Medicine

Advanced search

Common errors in filling in spreadsheets and how to avoid them

https://doi.org/10.37586/2686-8636-1-2021-105-109

Abstract

Errors during research can occur not only at the stage of planning, data collection and statistical analysis, but also at the stage of filling in spreadsheets. In most cases they can be easily corrected, otherwise results may be distorted. These errors can be categorized into invalid format and input errors. In the first case, the mixing of the absence of data and the zero values is especially dangerous, since it can lead to systematic errors: overestimation (if the zero values are filled in as the absence of data) or underestimation (if the absence of data is filled in as zero values) of the mean or the prevalence. Input errors are most often random, and their effect decreases with increasing sample size, but for the better analysis they should also be corrected as much as possible. The article provides an algorithm that allows you to find input errors and correct them before statistical analysis.

About the Author

S. N. Lysenkov
Pirogov Russian National Research Medical University, Russian Gerontology Research and Clinical Centre; M.V. Lomonosov Moscow State University
Russian Federation

Lysenkov Sergei N., MD, PhD, Senior Research, Department of Biological Evolution, Faculty of Biology, M.V. Lomonosov SU; Junior Research Fellow, Laboratory of the Musculoskel-etal System Diseases, Pirogov NRMU, RG RCC.

Moscow



References

1. Lang T. Twenty Statistical Errors Even YOU Can Find in Biomedical Research Articles. Croat Med J. 2004; 45 (4): 361–370.

2. Worthy G. (2015). Statistical analysis and reporting: common errors found during peer review and how to avoid them. Swiss Medical Weekly.2015; 145(0506). DOI: 10.4414/smw.2015.14076

3. L ee S.S. (2016). Avoiding negative reviewer comments: common statistical errors in anesthesia journals. Korean Journal of Anesthesiology. 2016; 69(3): 219–226. DOI: 10.4097/kjae.2016.69.3.219

4. Munyisia E.N., Reid D., & Yu P. (2017). Accuracy of outpatient service data for activity-based funding in New South Wales, Australia. Health Information Management Journal, 2017; 46(2): 78–86. DOI: 10.1177/1833358316678957

5. F ararouei M., Marzban M., & Shahraki G. (2017). Completeness of cancer registry data in a small Iranian province: a capture–recapture approach. Health Information Management Journal, 2017; 46(2): 96–100. DOI: 10.1177/1833358316668605

6. Kilkenny M.F., and Robinson K.M. «Data quality: «Garbage ingarbage out». Health Information Management Journal. 2018; 47(3): 103–105. DOI: 10.1177/1833358318774357

7. V ogt W.P. Garbage In, Garbage Out. (n.d.). Dictionary of Statistics & Methodology. 2005. P. 158. DOI: 10.4135/9781412983907.n809


Review

For citations:


Lysenkov S.N. Common errors in filling in spreadsheets and how to avoid them. Russian Journal of Geriatric Medicine. 2021;(1):105-109. (In Russ.) https://doi.org/10.37586/2686-8636-1-2021-105-109

Views: 692


Creative Commons License
This work is licensed under a Creative Commons BY-NC-SA 4.0.


ISSN 2686-8636 (Print)
ISSN 2686-8709 (Online)