Preview

Russian Journal of Geriatric Medicine

Advanced search

Review of polymorphisms, associated with cardiovascular diseases

https://doi.org/10.37586/2686-8636-4-2020-333-338

Abstract

In this research we examined studies of gene polymorphisms, associated with cardiovascular diseases through renin-angiotensin-aldosterone system activation (AGT с.521С>Т, AСE Ins>Del), nitric oxide decline (NOS3 с.894G>T), chronic inflammation (TNF -238G>A, MMP9 -1562С>T) and oxidative stress (CYBA c.214Т>С).

About the Authors

A. A. Akopyan
Pirogov Russian National Research Medical University of Ministry of Health of the Russian Federation, Russian Gerontology Research and Clinical Centre
Russian Federation

MD, Junior researcher, laboratory of translational gerontology

Moscow



I. D. Strazhesko
Pirogov Russian National Research Medical University of Ministry of Health of the Russian Federation, Russian Gerontology Research and Clinical Centre; Medical Scientific and Educational Center of Lomonosov Moscow State University
Russian Federation

MD, PhD, Deputy Director of translational medicine;

Leading Researcher at the Department of Agerelated diseases

Moscow



O. N. Tkacheva
Pirogov Russian National Research Medical University of Ministry of Health of the Russian Federation, Russian Gerontology Research and Clinical Centre
Russian Federation

MD, PhD, professor, Director

Moscow



A. P. Yesakova
Pirogov Russian National Research Medical University of Ministry of Health of the Russian Federation, Russian Gerontology Research and Clinical Centre; Moscow State University of Medicine and Dentistry
Russian Federation

MD, Junior researcher at laboratory of translational gerontology;

Assistant of the department of medical genetics

Moscow



I. A. Orlova
Medical Scientific and Educational Center of Lomonosov Moscow State University
Russian Federation

MD, PhD, Professor, Head of the Department of Age-associated diseases

Moscow



References

1. ВОЗ Сердечно-сосудистые заболевания (11 April, 2020) http://www.who.int/cardiovascular_diseases/ru/

2. Strazhesko I., Tkacheva O., Boytsov S., Akasheva D., Dudinskaya E., Vygodin V., Skvortsov D., Nilsson P. Association of Insulin Resistance, Arterial Stiffness and Telomere Length in Adults Free of Cardiovascular Diseases. Li Volti G, ed. PLoS ONE. 2015; 10(8): e0136676. DOI: 10.1371/journal.pone.0136676

3. He W., Kwesiga M.P., Gebreyesus E., Liu S. Nitric Oxide and Oxidative Stress-Mediated Cardiovascular Functionality: From Molecular Mechanism to Cardiovascular Disease. Vascular Biology. Published online February 13, 2019. DOI:10.5772/intechopen.82556

4. McMaster W.G., Kirabo A., Madhur M.S., Harrison D.G. Inflammation, Immunity, and Hypertensive End-Organ Damage. Circ Res. 2015; 116(6): 1022–33. DOI:10.1161/CIRCRESAHA.116.303697

5. Neves M.F., Cunha A.R., Cunha M.R., Gismondi R.A., Oigman W. The Role of ReninAngiotensin-Aldosterone System and Its New Components in Arterial Stiffness and Vascular Aging. High Blood Press Cardiovasc Prev. 2018; 25(2): 137–45. DOI:10.1007/s40292-018-0252-5

6. Pykhtina V.S., Strazhesko I.D., Agaltsov M.V., Tkacheva O.N. Renin-angiotensin-aldosterone system and replicative cellular senescence: their interaction during the vascular ageing. Ration Pharmacother Cardiol. 2014; 10(3): 312–16. (In Russ.) Пыхтина В.С., Стражеско И.Д., Агальцов М.В., Ткачева О.Н. Ренин-ангиотензин-альдостероновая система и репликативное клеточное старение: их взаимодействие в ходе старения сосудов. Рациональная Фармакотерапия в Кардиологии 2014; 10(3): 312–16. ISSN: 1819-6446

7. Hristova M., Stanilova S., Miteva L. Serum concentration of renin-angiotensin system components in association with ACE I/D polymorphism among hypertensive subjects in response to ACE inhibitor therapy. Clinical and Experimental Hypertension. 2019; 41(7): 662–9. DOI:10.1080/10641963.2018.1529782

8. Purkait P., Halder K., Thakur S., Ghosh Roy A., Raychaudhuri P., Bhattacharya S., Sarkar B.N., Naidu J. M.Association of angiotensinogen gene SNPs and haplotypes with risk of hypertension in eastern Indian population. Clin Hypertens. 2017; 23: 12. DOI:10.1186/s40885-017-0069-x

9. Isordia-Salas I., Santiago-Germán D., CerdaMancillas M.C., Hernández-Juárez J., BernabeGarcía M., Leaños-Miranda A., Alvarado-Moreno J.A., Majluf-Cruz A. Gene polymorphisms of angiotensinconverting enzyme and angiotensinogen and risk of idiopathic ischemic stroke. Gene. 2019; 688: 163–70. DOI:10.1016/j.gene.2018.11.080

10. Wang W-Z. Association between T174M polymorphism in the angiotensinogen gene and risk of coronary artery disease: a meta-analysis. J Geriatr Cardiol. 2013; 10(1): 59–65. DOI:10.3969/j.issn.1671-5411.2013.01.010

11. Hu P.Y., Wang Y.W., Pang X.H., Wang H.W. T174M polymorphism in the angiotensinogen gene and risk of myocardial infarction: a metaanalysis. Genet Mol Res. 2015; 14(2): 3767–74. DOI:10.4238/2015.April.22.5

12. Camós S., Cruz M.J., Morell F., Solé E. Geneticbased reference values for angiotensin-converting enzyme (ACE) according to I/D polymorphism in a Spanish population sample. Clin Chem Lab Med. 2012; 50(10): 1749–53. DOI:10.1515/cclm-2012-0042

13. Abouelfath R., Habbal R., Laaraj A., Khay K., Harraka M., Nadifi S. ACE insertion/deletion polymorphism is positively associated with resistant hypertension in Morocco. Gene. 2018; 658: 178–83. DOI:10.1016/j.gene.2018.03.028

14. Yuan H., Wang X., Xia Q., Ge P., Wang X., Cao X. Angiotensin converting enzyme (I/D) gene polymorphism contributes to ischemic stroke risk in Caucasian individuals: a meta-analysis based on 22 case-control studies. Int J Neurosci. 2016; 126(6): 488–98. DOI:10.3109/00207454.2015.1036421

15. Xia M-M., Wang M., Jiang H., Liu Y., Ma L., Lu C., Zhang W. Association of AngiotensinConverting Enzyme Insertion/Deletion Polymorphism with the Risk of Atherosclerosis. J Stroke Cerebrovasc Dis. 2019; 28(6): 1732–43. DOI:10.1016/j.jstrokecerebrovasdis.2019.02.012

16. Nouryazdan N., Adibhesami G., Birjandi M., Heydari R., Yalameha B., Shahsavari G. Study of angiotensin-converting enzyme insertion/deletion polymorphism, enzyme activity and oxidized low density lipoprotein in Western Iranians with atherosclerosis: a case-control study. BMC Cardiovasc Disord. 2019; 19. DOI:10.1186/s12872-019-1158-4

17. Tousoulis D., Kampoli A-M., Tentolouris Nikolaos Papageorgiou C., Stefanadis C. The Role of Nitric Oxide on Endothelial Function. CVP. 2012; 10(1): 4–18. DOI:10.2174/157016112798829760

18. Incalza M.A., D’Oria R., Natalicchio A., Perrini S., Laviola L., Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol. 2018; 100: 1–19. DOI:10.1016/j.vph.2017.05.005

19. Veerasamy M., Bagnall A., Neely D., Allen J., Sinclair H., Kunadian V. Endothelial Dysfunction and Coronary Artery Disease: A State of the Art Review. Cardiology in Review. 2015; 23(3): 119–29. DOI:10.1097/CRD.0000000000000047

20. Mahmoodi K., Nasehi L., Karami E., Soltanpour M.S. Association of Nitric Oxide Levels and Endothelial Nitric Oxide Synthase G894T Polymorphism with Coronary Artery Disease in the Iranian Population. Vasc Specialist Int. 2016; 32(3): 105–12. DOI:10.5758/vsi.2016.32.3.105

21. Luo Z., Jia A., Lu Z., Muhammad I., Adenrele A., Song Y. Associations of the NOS3 rs1799983 polymorphism with circulating nitric oxide and lipid levels: a systematic review and meta-analysis. Postgraduate Medical Journal. 2019; 95(1125): 361–71. DOI:10.1136/postgradmedj-2019-136396

22. ALrefai A.A., Habib MSE-D., Yaseen R.I., Gabr M.K., Habeeb R.M. Association of endothelial nitric oxide synthase (eNOS) gene G894T polymorphism with hypertension risk and complications. Mol Cell Biochem. 2016; 421(1-2): 103–10. DOI:10.1007/s11010-016-2790-2

23. Kumar A., Misra S., Kumar P., Prasad K., Pandit A.K., Chakravarty K., Kathuria P., Gulati A. Association between endothelial nitric oxide synthase gene polymorphisms and risk of ischemic stroke: A meta-analysis. Neurol India. 2017; 65(1): 22–34. DOI:10.4103/0028-3886.198170

24. Campedelli F.L., E Silva K.S.F., Rodrigues D.A., Martins J.V.M., Costa I.R., Lagares M.H., Barbosa A.M., Morais M.P., Moura K.K.V.O. Polymorphism of the gene eNOS G894T (Glu298Asp) in symptomatic patients with aterosclerosis. Genet Mol Res. 2017; 16(2). DOI:10.4238/gmr16029550

25. Guo Q., Zhang H., Zhang B., Zhang E., Wu Y. Tumor Necrosis Factor-alpha (TNF-α) Enhances miR-155-Mediated Endothelial Senescence by Targeting Sirtuin1 (SIRT1). Med Sci Monit. 2019; 25: 8820–35. DOI:10.12659/MSM.919721

26. Verma M.K., Jaiswal A., Sharma P., Kumar P., Singh A.N. Oxidative stress and biomarker of TNF-α, MDA and FRAP in hypertension. J Med Life. 2019; 12(3): 253–9. DOI:10.25122/jml-2019-0031

27. Yi L., Tang J., Shi C., Zhang T., Li J., Guo F., et al. Pentraxin 3, TNF-α, and LDL-C Are Associated With Carotid Artery Stenosis in Patients With Ischemic Stroke. Front Neurol. 2020; 10. DOI:10.3389/fneur.2019.01365

28. Han W., Wei Z., Zhang H., Geng C., Dang R., Yang M., et al. The Association Between Sortilin and Inflammation in Patients with Coronary Heart Disease. J Inflamm Res. 2020; 13: 71–9. DOI:10.2147/JIR.S240421

29. Cheng Y., An B., Jiang M., Xin Y., Xuan S. Association of Tumor Necrosis Factor-alpha Polymorphisms and Risk of Coronary Artery Disease in Patients With Non-alcoholic Fatty Liver Disease. Hepat Mon. 2015; 15(3): e26818. DOI:10.5812/hepatmon.26818

30. Kumar P., Misra S., Kumar A., Pandit A.K., Chakravarty K., Prasad K. Association between Tumor Necrosis Factor-α (-238G/A and -308G/A) Gene Polymorphisms and Risk of Ischemic Stroke: A Meta-Analysis. Pulse (Basel). 2016; 3(3–4): 217–28. DOI:10.1159/000443770

31. Mondal S., Adhikari N., Banerjee S., Amin S.A., Jha T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. European Journal of Medicinal Chemistry. 2020; 194: 112260. DOI:10.1016/j.ejmech.2020.112260

32. Meschiari C.A., Ero O.K., Pan H., Finkel T., Lindsey M.L. The impact of aging on cardiac extracellular matrix. GeroScience. 2017; 39(1): 7–18. DOI:10.1007/s11357-017-9959-9

33. Radosinska J., Barancik M., Vrbjar N.. Heart failure and role of circulating MMP-2 and MMP-9. Panminerva Med. 2017; 59(3): 241–53. DOI:10.23736/S0031-0808.17.03321-3

34. Hannocks M-J., Zhang X., Gerwien H., Chashchina A., Burmeister M., Korpos E., Song J., `Sorokin L.M. The gelatinases, MMP-2 and MMP-9, as fine tuners of neuroinflammatory processes. Matrix Biology. 2019; 75–6: 102–113. DOI:10.1016/j.matbio.2017.11.007

35. Lahdentausta L., Leskelä J., Winkelmann A., Tervahartiala T., Sorsa T., Pesonen E., Pussinen P. Serum MMP-9 Diagnostics, Prognostics, and Activation in Acute Coronary Syndrome and Its Recurrence. J Cardiovasc Transl Res. 2018; 11(3): 210–20. DOI:10.1007/s12265-018-9789-x

36. Misra S., Talwar P., Kumar A., Kumar P., Sagar R., Vibha D., Pandit A. K., Gulati A., Kushwaha S., Prasad K. Association between matrix metalloproteinase family gene polymorphisms and risk of ischemic stroke: A systematic review and metaanalysis of 29 studies. Gene. 2018; 672: 180–94. DOI:10.1016/j.gene.2018.06.027

37. Buraczynska K., Kurzepa J., Ksiazek A., Buraczynska M., Rejdak K. Matrix Metalloproteinase-9 (MMP-9) Gene Polymorphism in Stroke Patients. Neuromolecular Med. 2015; 17(4): 385–90. DOI:10.1007/s12017-015-8367-5

38. Yang W., Lu J., Yang L., Zhang J. Association of Matrix Metalloproteinase-9 Gene −1562C/T Polymorphism with Essential Hypertension: A Systematic Review and Meta-Analysis Article. Iran J Public Health. 2015; 44(11): 1445–52. PMCID: PMC4703223

39. Opstad T.B., Arnesen H., Pettersen A.Å., Seljeflot I. The MMP-9 -1562 C/T polymorphism in the presence of metabolic syndrome increases the risk of clinical events in patients with coronary artery disease. PLoS ONE. 2014; 9(9): e106816. DOI:10.1371/journal.pone.0106816

40. Stasia M.J. CYBA encoding p22phox, the cytochrome b558 alpha polypeptide: gene structure, expression, role and physiopathology. Gene. 2016; 586(1): 27–35. DOI:10.1016/j.gene.2016.03.050

41. Cuevas S., Villar V.A.M., Jose P.A. Genetic polymorphisms associated with reactive oxygen species and blood pressure regulation. Pharmacogenomics J. 2019; 19(4): 315–336. DOI:10.1038/s41397-019-0082-4

42. Ochoa C.D., Wu R.F., Terada L.S. ROS signaling and ER stress in cardiovascular disease. Mol Aspects Med. 2018; 63: 18–29. DOI:10.1016/j.mam.2018.03.002

43. Rafiq A., Aslam K., Malik R., Afroze D. C242T polymorphism of the NADPH oxidase p22PHOX gene and its association with endothelial dysfunction in asymptomatic individuals with essential systemic hypertension. Molecular Medicine Reports. 2014; 9(5): 1857–62. DOI:10.3892/mmr.2014.1992

44. Zhang L., Wu J., Duan X., Tian X., Shen H., Sun Q., Chen G. NADPH Oxidase: A Potential Target for Treatment of Stroke. Oxid Med Cell Longev. 2016. DOI:10.1155/2016/5026984

45. Xu Q., Yuan F., Shen X., Wen H., Li W., Cheng B., Wu J. Polymorphisms of C242T and A640G in CYBA gene and the risk of coronary artery disease: a meta-analysis. PLoS ONE. 2014; 9(1): e84251. DOI:10.1371/journal.pone.0084251

46. Hashad I.M., Abdel Rahman M.F., AbdelMaksoud S.M., Amr K.S., Effat L.K., Shaban G.M., Gad M.Z. C242T polymorphism of NADPH oxidase p22phox gene reduces the risk of coronary artery disease in a random sample of Egyptian population. Mol Biol Rep. 2014; 41(4): 2281–6. DOI:10.1007/s11033-014-3081-1

47. Ji Y., Ge J., Zhu Z., et al. Relationship between C242T polymorphism and arterial stiffness in an apparently healthy population. Journal of Human Hypertension. 2016;30(8):488-92. DOI:10.1038/jhh.2015.108

48. Mazaheri M., Karimian M., Behjati M., et al. Association analysis of rs1049255 and rs4673 transitions in p22phox gene with coronary artery disease: A case-control study and a computational analysis. Ir J Med Sci. 2017; 186(4): 921–8. DOI:10.1007/s11845-017-1601-4

49. Buraczynska M., Drop B., Jacob J., et al. Association between p22PHOX gene C242T polymorphism and hypertension in end-stage kidney disease patients. J Hum Hypertens. Published online February 10, 2020. DOI:10.1038/s41371-020-0310-z


Review

For citations:


Akopyan A.A., Strazhesko I.D., Tkacheva O.N., Yesakova A.P., Orlova I.A. Review of polymorphisms, associated with cardiovascular diseases. Russian Journal of Geriatric Medicine. 2020;(4):333-338. (In Russ.) https://doi.org/10.37586/2686-8636-4-2020-333-338

Views: 913


Creative Commons License
This work is licensed under a Creative Commons BY-NC-SA 4.0.


ISSN 2686-8636 (Print)
ISSN 2686-8709 (Online)