Preview

Russian Journal of Geriatric Medicine

Advanced search

Rehabilitation of physical functions of geriatric patients after COVID-19

https://doi.org/10.37586/2686-8636-4-2025-512-526

Abstract

Coronavirus disease 2019 (COVID-19) has caused significant morbidity and mortality worldwide. Convalescents often experience a chronic condition known as long COVID-19. The relationship between SARS-CoV-2 infection and skeletal muscle damage has sparked significant interest within the global medical community. Sarcopenia is a severe complication of the acute and long-term phases of the disease. Comprehensive rehabilitation is necessary to restore strength, muscle mass, and skeletal muscle function in patients after they have had the disease. The prevention and treatment of sarcopenia necessarily include various types of physical exercise. Patients should undergo rehabilitation after a comprehensive geriatric assessment to identify frailty syndrome, carried out by a team of medical specialists under the guidance of a geriatrician. Several authors propose comprehensive physical rehabilitation strategies to restore physical function, including aerobic and/or strength training and breathing exercises. Some types of physical exercise can be performed by patients in severe conditions while lying supine in bed. Telemedicine offers greater accessibility by avoiding physical contact and enabling engagement with a multidisciplinary team of specialists. It allows for remote consultations with patients in remote areas and eliminates the risk of infection. This literature review examines the main mechanisms of sarcopenia development after a SARS-CoV-2 infection and methods for skeletal muscle rehabilitation in geriatric patients.

About the Authors

D. P. Kurmaev
Samara State Medical University
Russian Federation

Samara



S. V. Bulgakova
Samara State Medical University
Russian Federation

Bulgakova Svetlana Viktorovna

Samara



E. V. Treneva
Samara State Medical University
Russian Federation

Samara



O. V. Kosareva
Samara State Medical University
Russian Federation

Samara



L. A. Sharonova
Samara State Medical University
Russian Federation

Samara



Yu. A. Dolgikh
Samara State Medical University
Russian Federation

Samara



References

1. Lobanova O. A., Trusova D. S., Rudenko E. E., et al. Pathomorphology of a new coronavirus infection COVID-19. Siberian Journal of Clinical and Experimental Medicine. 2020 ; 35 (3) : 47–52. (In Russ.). doi: 10.29001/2073-8552-2020-35-3-47-52.

2. Chuang H. J., Lin C. W., Hsiao M. Y., et al. Long COVID and rehabilitation. J Formos Med Assoc. 2024 ; 123 Suppl 1 : S61–S69. doi: 10.1016/j.jfma.2023.03.022.

3. González-Islas D., Flores-Cisneros L., Orea-Tejeda A., et al. The association between body composition phenotype and insulin resistance in post-COVID-19 syndrome patients without diabetes: A cross-sectional, single-center study. Nutrients. 2024 ; 16 (15) : 2468 doi: 10.3390/nu16152468.

4. Cruz-Jentoft A. J., Baeyens J. P., Bauer J. M., et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010 ; 39 (4) : 412–423. doi: 10.1093/ageing/afq034.

5. Sayer A. A., Cooper R., Arai H., et al. Sarcopenia. Nat Rev Dis Primers. 2024 ; 10 (1) : 68 doi: 10.1038/s41572-024-00550-w.

6. Deng X., Wang P., Yuan H. Epidemiology, risk factors across the spectrum of age-related metabolic diseases. J Trace Elem Med Biol. 2020 ; 61 : 126497 doi: 10.1016/j.jtemb.2020.126497.

7. Chhetri J. K., de SoutoBarreto P., Fougère B., et al. Chronic inflammation and sarcopenia: A regenerative cell therapy perspective. Exp Gerontol. 2018 ; 103 : 115–123. doi: 10.1016/j.exger.2017.12.023.

8. Ivannikova E. V., Dudinskaya E. N., Onuchina Yu. S. Muscle metabolism in older adults. Russian Journal of Geriatric Medicine. 2022 ; (2) : 96–102. (In Russ.). doi: 10.37586/2686-8636-2-2022-96-102.

9. Safonova Yu. A., Toroptsova N. V. Frequency and risk factors of sarcopenia in the elderly people. The Clinician. 2022 ; 16 (2) : 40–47. (In Russ.). doi: 10.17650/1818-8338-2022-16-2-K661.

10. Topolyanskaya S. V. Sarcopenia, obesity, osteoporosis and old age. Sechenov Medical Journal. 2020 ; 11 (4) : 23–35. (In Russ.). doi: 10.47093/2218-7332.2020.11.4.23-35.

11. Bilski J., Pierzchalski P., Szczepanik M., et al. Multifactorial mechanism of sarcopenia and sarcopenic obesity. Role of physical exercise, microbiota and myokines. Cells. 2022 ; 11 (1) : 160 doi: 10.3390/cells11010160.

12. McAuley H. J. C., Harvey-Dunstan T. C., Craner M., et al. Longitudinal changes to quadriceps thickness demonstrate acute sarcopenia following admission to hospital for an exacerbation of chronic respiratory disease. Thorax. 2021 ; 76 (7) : 726–728. doi: 10.1136/thoraxjnl-2020-215949.

13. de Andrade-Junior M. C., de Salles I. C. D., de Brito C. M. M., et al. Skeletal muscle wasting and function impairment in intensive care patients with severe COVID-19. Front Physiol. 2021 ; 12 : 640973 doi: 10.3389/fphys.2021.640973.

14. De Spiegeleer A., Kahya H., Sanchez-Rodriguez D., et al. Acute sarcopenia changes following hospitalization: influence of pre-admission care dependency level. Age Ageing. 2021 ; 50 (6) : 2140–2146. doi: 10.1093/ageing/afab163.

15. Hartley P., Romero-Ortuno R., Wellwood I., Deaton C. Changes in muscle strength and physical function in older patients during and after hospitalisation: a prospective repeated-measures cohort study. Age Ageing. 2021 ; 50 (1) : 153–160. doi: 10.1093/ageing/afaa103.

16. Tanner R. E., Brunker L. B., Agergaard J., et al. Age-related differences in lean mass, protein synthesis and skeletal muscle markers of proteolysis after bed rest and exercise rehabilitation. J Physiol. 2015 ; 593 (18) : 4259–4273. doi: 10.1113/JP270699.

17. Woolford S. J., D’Angelo S., Curtis E. M., et al. COVID-19 and associations with frailty and multimorbidity: a prospective analysis of UK biobank participants. Aging Clin Exp Res. 2020 ; 32 (9) : 1897–1905. doi: 10.1007/s40520-020-01653-6.

18. Kim O. T., Drapkina O. M., Rodionova Yu. V. Russian-language publication activity of medical researchers in during COVID-19 pandemic: «post-COVID-19 syndrome». Cardiovascular Therapy and Prevention. 2022 ; 21 (6) : 3299 (In Russ.). doi: 10.15829/1728-8800-2022-3299.

19. Piotrowicz K., Gąsowski J., Michel J. P., Veronese N. Post-COVID-19 acute sarcopenia: physiopathology and management. Aging Clin Exp Res. 2021 ; 33 (10) : 2887–2898. doi: 10.1007/s40520-021-01942-8.

20. Petrov M. V., Belugina T. N., Burmistrova L. F., Gracheva J. N. Comparative characteristics of the quality of life in patients with senile asthenia and history of COVID-19 three and six months after discharge from the hospital. Siberian Journal of Clinical and Experimental Medicine. 2022 ; 37 (1) : 123–128. (In Russ.). doi: 10.29001/2073-8552-2022-37-1-123-128.

21. Berdnikov G. A., Kudryashova N. Y., Migunova E. V., et al. Development of rhabdomyolysis in the long-term period of previous new coronavirus infection COVID-19 (Clinical case report). Russian Sklifosovsky Journal «Emergency Medical Care». 2021 ; 10 (3) : 452–459. (In Russ.). doi: 10.23934/2223-9022-2021-10-3-452-459.

22. Kurmaev D. P., Bulgakova S. V., Treneva E. V., Chetverikova I. S. Frailty, sarcopenia and COVID-19 in geriatric patients (Literature review). Advances in Gerontology. 2022 ; 35 (5) : 726–736. (In Russ.). doi: 10.34922/AE.2022.35.5.009.

23. Tkacheva O. N., Kotovskaya Yu. V., Aleksanian L. A., et al. Consensus statement of the Russian association of gerontologists and geriatricians «Novel coronavirus SARS-COV-2 infection in older adults: specific issues of prevention, diagnostics and management» (key points). Russian Journal of Geriatric Medicine. 2020 ; (4) : 281–293. (In Russ.). doi: 10.37586/2686-8636-4-2020-281-293.

24. BulgakovaS. V., Kurmaev D. P., Treneva E. V. Sarcopenia and COVID-19 — a complex pathological duet. Experimental and Clinical Gastroenterology. 2024 ; (8) : 196–215. (In Russ.). doi: 10.31146/1682-8658-ecg-228-8-196-215.

25. Kotova M. B., Maksimov S. A., Shalnova S. A., et al. Levels and types of physical activity in Russia according to the ESSE-RF study: is there a trace of the COVID-19 pandemic? Cardiovascular Therapy and Prevention. 2023 ; 22 (8S) : 3787 (In Russ.). doi: 10.15829/1728-8800-2023-3787.

26. Mukaneeva D. K., Kontsevaya A. V., Antsiferova A. A., et al. Association of COVID-19 lockdown measures with changes in physical activity of the adult population of Russia. Cardiovascular Therapy and Prevention. 2021 ; 20 (7) : 2938 (In Russ.). doi: 10.15829/1728-8800-2021-2938.

27. Greenhalgh T., Knight M., A'Court C., et al. Management of post-acute covid-19 in primary care. BMJ. 2020 ; 370 : m3026. doi: 10.1136/bmj.m3026.

28. Morley J. E., Kalantar-Zadeh K., Anker S. D. COVID-19: a major cause of cachexia and sarcopenia? J Cachexia Sarcopenia Muscle. 2020 ; 11 (4) : 863–865. doi: 10.1002/jcsm.12589.

29. Kirwan R., McCullough D., Butler T., et al. Sarcopenia during COVID-19 lockdown restrictions: long-term health effects of short-term muscle loss. Geroscience. 2020 ; 42 (6) : 1547–1578. doi: 10.1007/s11357-020-00272-3.

30. Welch C. K., Hassan-Smith Z. A. Greig C. et al. Acute sarcopenia secondary to hospitalisation — an emerging condition affecting older adults. Aging Dis. 2018 ; 9 (1) : 151– 164 doi: 10.14336/AD.2017.0315.

31. Goodwin V. A., Allan L., Bethel A., et al. Rehabilitation to enable recovery from COVID-19: a rapid systematic review. Physiotherapy. 2021 ; 111 : 4–22. doi: 10.1016/j. physio.2021.01.007.

32. Thomas P., Baldwin C., Bissett B., et al. Physiotherapy management for COVID-19 in the acute hospital setting: clinical practice recommendations. J Physiother. 2020 ; 66 (2) : 73–82. doi: 10.1016/j.jphys.2020.03.011.

33. Kuang Q. F., Ni Y. Q., Liu Y. S. Frontiers in nondrug treatment of sarcopenia: a review of pathological mechanisms and the latest treatment strategies. Aging Med (Milton). 2025 ; 8 (3) : 200–209. doi: 10.1002/agm2.70011.

34. Samoilova Yu. G., Matveeva M. V., Khoroshunova E. A., et al. Cardiometabolic risk factors in patients with type 2 diabetes and sarcopenia. Cardiovascular Therapy and Prevention. 2024 ; 23 (1) : 3655 (In Russ.). doi: 10.15829/1728-8800-2024-3655.

35. Karaseva A. A., Khudyakova A. D., Ragino Yu. I. Metabolic disorders and the risk of COVID-19. Sibirskiy nauchnyy meditsinskiy zhurnal = Siberian Scientific Medical Journal. 2022 ; 42 (1) : 4–12. (In Russ.). doi: 10.18699/SSMJ20220101.

36. Garg S., Kim L., Whitaker M., et al. Hospitalization rates and characteristics of patients hospitalized with laboratory-confirmed coronavirus disease 2019 — COVID-NET, 14 States, March 1–30, 2020 MMWR Morb Mortal Wkly Rep. 2020 ; 69 (15) : 458–464. doi: 10.15585/mmwr.mm6915e3.

37. Ammar A., Brach M., Trabelsi K., et al. Effects of COVID-19 home confinement on eating behaviour and physical activity: results of the ECLB-COVID19 international online survey. Nutrients. 2020 ; 12 (6) : 1583 doi: 10.3390/nu12061583.

38. Breen L., Stokes K. A., Churchward-Venne T. A., et al. Two weeks of reduced activity decreases leg lean mass and induces «anabolic resistance» of myofibrillar protein synthesis in healthy elderly. J Clin Endocrinol Metab. 2013 ; 98 (6) : 2604–2612 doi: 10.1210/jc.2013-1502.

39. Abadi A., Glover E. I., Isfort R. J., Raha S., Safdar A., Yasuda N., et al. Limb immobilization induces a coordinate down-regulation of mitochondrial and other metabolic pathways in men and women. PLoS One. 2009 ; 4 (8) : e6518. doi: 10.1371/journal.pone.0006518.

40. Dos Santos C., Hussain S. N., Mathur S., et al. Mechanisms of chronic muscle wasting and dysfunction after an intensive care unit stay. A pilot study. Am J Respir Crit Care Med. 2016 ; 194 (7) : 821–830. doi: 10.1164/rccm.201512-2344OC.

41. Kilroe S. P., Fulford J., Jackman S. R., VAN Loon L. J. C., Wall B. T. Temporal Muscle-specific Disuse Atrophy during One Week of Leg Immobilization. Med Sci Sports Exerc. 2020 ; 52 (4) : 944–954. doi: 10.1249/MSS.0000000000002200.

42. Zhou F., Yu T., Du R., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020 ; 395 (10229) : 1054–1062. doi: 10.1016/S0140-6736(20)30566-3.

43. Guan W. J., Ni Z. Y., Hu Y., et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020 ; 382 (18) : 1708–1720. doi: 10.1056/NEJMoa2002032.

44. Ali A. M., Kunugi H. Skeletal muscle damage in COVID-19: a call for action. Medicina (Kaunas). 2021 ; 57 (4) : 372 doi: 10.3390/medicina57040372.

45. Welch C., Greig C., Masud T., et al. COVID-19 and Acute Sarcopenia. Aging Dis. 2020 ; 11 (6) : 1345–1351. doi: 10.14336/AD.2020.1014.

46. English K. L., Paddon-Jones D. Protecting muscle mass and function in older adults during bed rest. Curr Opin Clin Nutr Metab Care. 2010 ; 13 (1) : 34–39. doi: 10.1097/MCO.0b013e328333aa66.

47. Huang C., Huang L., Wang Y., et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2023 ; 401 (10393) : e21–e33. doi: 10.1016/S0140-6736(23)00810-3.

48. Carvalho-Schneider C., Laurent E., Lemaignen A., et al. Follow-up of adults with noncritical COVID-19 two months after symptom onset. Clin Microbiol Infect. 2021 ; 27 (2) : 258–263 doi: 10.1016/j.cmi.2020.09.052.

49. Hastie C. E., Lowe D. J., McAuley A., et al. Outcomes among confirmed cases and a matched comparison group in the Long-COVID in Scotland study. Nat Commun. 2022 ; 13 (1) : 5663 doi: 10.1038/s41467-022-33415-5.

50. Bahmer T., Borzikowsky C., Lieb W., et al. Severity, predictors and clinical correlates of Post-COVID syndrome (PCS) in Germany: A prospective, multi-centre, population-based cohort study. EClinicalMedicine. 2022 ; 51 : 101549 doi: 10.1016/j.eclinm.2022.101549.

51. Subramanian A., Nirantharakumar K., Hughes S., et al. Symptoms and risk factors for long COVID in non-hospitalized adults. Nat Med. 2022 ; 28 (8) : 1706–1714. doi: 10.1038/s41591-022-01909-w.

52. Xu Y., Xu J. W., You P., et al. Prevalence of Sarcopenia in patients with COVID-19: A systematic review and meta-analysis. Front Nutr. 2022 ; 9 : 925606 doi: 10.3389/.fnut.2022.925606

53. Paneroni M., Simonelli C., Saleri M., et al. Muscle strength and physical performance in patients without previous disabilities recovering from COVID-19 pneumonia. Am J Phys Med Rehabil. 2021 ; 100 (2) : 105–109. doi: 10.1097/PHM.0000000000001641.

54. Gérard M., Mahmutovic M., Malgras A., et al. Long-term evolution of malnutrition and loss of muscle strength after COVID-19: a major and neglected component of Long COVID-19. Nutrients. 2021 ; 13 (11) : 3964 doi: 10.3390/nu13113964.

55. Evans R. A., McAuley H., Harrison E. M., et al. Physical, cognitive, and mental health impacts of COVID-19 after hospitalisation (PHOSP-COVID): a UK multicentre, prospective cohort study. Lancet Respir Med. 2021 ; 9 (11) : 1275–1287. doi: 10.1016/S2213-2600(21)00383-0.

56. Barrea L., Grant W. B., Frias-Toral E., et al. Dietary Recommendations for Post-COVID-19 Syndrome. Nutrients. 2022 ; 14 (6) : 1305 doi: 10.3390/nu14061305.

57. Mills G., Daynes E., McAuley H. J. C., et al. Resistance Training in Post-COVID Recovery: Rationale and Current Evidence. J Frailty Sarcopenia Falls. 2023 ; 8 (3) : 188–194. doi: 10.22540/JFSF-08-188.

58. Larina V. N., Karpenko D. G., Soloviyev S. S., Sheregova E. N. Rehabilitation of the elderly patients after pneumonia caused by SARS-COV-2: the continuity of inpatient and outpatient stages. Russian Journal of Geriatric Medicine. 2020 ; (4) : 327–332. (In Russ.). doi: 10.37586/2686-8636-4-2020-327-332.

59. Alenskaya T. L. Experience in organizing medical and social interdisciplinary online support for seniors during COVID-19 infection. Russian Journal of Geriatric Medicine. 2021 ; (4) : 435–443. (In Russ.). doi: 10.37586/2686-8636-4-2021-435-443.

60. Soriano J. B., Murthy S., Marshall J. C., et al. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis. 2022 ; 22 (4) : e102–e107. doi: 10.1016/S1473-3099(21)00703-9.

61. Tkacheva O. N., Kotovskaya Yu. V., Runikhina N. K., et al. Clinical guidelines on frailty. Russian Journal of Geriatric Medicine. 2020 ; (1) : 11–46. (In Russ.). doi: 10.37586/2686-8636-1-2020-11-46.

62. Stussman B., Williams A., Snow J., et al. Characterization of post-exertional malaise in patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Neurol. 2020 ; 11 : 1025 doi: 10.3389/fneur.2020.01025.

63. Parker M., Sawant H. B., Flannery T., et al. Effect of using a structured pacing protocol on post-exertional symptom exacerbation and health status in a longitudinal cohort with the post-COVID-19 syndrome. J Med Virol. 2023 ; 95 (1) : e28373. doi: 10.1002/jmv.28373.

64. Writing Committee, Gluckman T. J., Bhave N. M., et al. 2022 ACC expert consensus decision pathway on cardiovascular sequelae of COVID-19 in adults: Myocarditis and other myocardial involvement, Post-Acute Sequelae of SARS-CoV-2 infection, and return to play: A report of the American College of Cardiology solution set Oversight Committee. J Am CollCardiol. 2022 ; 79 (17) : 1717–1756. doi: 10.1016/j.jacc.2022.02.003.

65. Dani M., Dirksen A., Taraborrelli P., et al. Autonomic dysfunction in 'long COVID': rationale, physiology and management strategies. Clin Med (Lond). 2021 ; 21 (1) : e63–e67. doi: 10.7861/clinmed.2020-0896.

66. Rusch H. L., Rosario M., Levison L. M., et al. The effect of mindfulness meditation on sleep quality: a systematic review and meta-analysis of randomized controlled trials. Ann N Y Acad Sci. 2019 ; 1445 (1) : 5–16. doi: 10.1111/nyas.13996.

67. Kriakous S. A., Elliott K. A., Lamers C., Owen R. The effectiveness of mindfulness-based stress reduction on the psychological functioning of healthcare professionals: a systematic review. Mindfulness (N Y). 2021 ; 12 (1) : 1–28. doi: 10.1007/s12671-020-01500-9.

68. Hayden M. C., Limbach M., Schuler M., et al. Effectiveness of a three-week inpatient pulmonary rehabilitation program for patients after COVID-19: a prospective observational study. Int J Environ Res Public Health. 2021 ; 18 (17) : 9001 doi: 10.3390/ijerph18179001.

69. Ahmed I., Inam A. B., Belli S., et al. Effectiveness of aerobic exercise training program on cardio-respiratory fitness and quality of life in patients, recovered from COVID-19. European Journal of Physiotherapy. 2021 ; 24 (10) : 1–6. doi: 10 .1080/21679169.2021.1909649.

70. Marcangeli V., Youssef L., Dulac M., et al. Impact of high-intensity interval training with or without l-citrulline on physical performance, skeletal muscle, and adipose tissue in obese older adults. J Cachexia Sarcopenia Muscle. 2022 ; 13 (3) : 1526–1540. doi: 10.1002/jcsm.12955.

71. McKendry J., Lowisz C. V., Nanthakumar A., et al. The effects of whey, pea, and collagen protein supplementation beyond the recommended dietary allowance on integrated myofibrillar protein synthetic rates in older males: a randomized controlled trial. Am J ClinNutr. 2024 ; 120 (1) : 34–46. doi: 10.1016/j.ajcnut.2024.05.009.

72. Kim S., Park J., Kim D. H., et al. Combined exercise and nutrition intervention for older women with spinal sarcopenia: an open-label single-arm trial. BMC Geriatr. 2023 ; 23 (1) : 346 doi: 10.1186/s12877-023-04063-1.

73. Wehrle A., Waibel S., Gollhofer A., Roecker K. Power output and efficiency during supine, recumbent, and upright cycle ergometry. Front Sports Act Living. 2021 ; 3 : 667564 doi: 10.3389/fspor.2021.667564.

74. Bailey D. P., Harper J. H., Kilbride C., et al. The frail-LESS (LEss sitting and sarcopenia in frail older adults) remote intervention to improve sarcopenia and maintain independent living via reductions in sedentary behaviour: findings from a randomised controlled feasibility trial. BMC Geriatr. 2024 ; 24 (1) : 747 doi: 10.1186/s12877-024-05310-9.

75. Saito Y., Nakamura S., Kasukawa T., et al. Efficacy of exercise with the hybrid assistive limb lumbar type on physical function in mobility-limited older adults: A 5-week randomized controlled trial. Exp Gerontol. 2024 ; 195 : 112536 doi: 10.1016/j.exger.2024.112536.

76. Mo Y., Chen L., Zhou Y., et al. Sarcopenia interventions in long-term care facilities targeting sedentary behaviour and physical inactivity: A systematic review. J Cachexia Sarcopenia Muscle. 2024 ; 15 (6) : 2208–2233. doi: 10.1002/jcsm.13576.

77. Kido Y., Yoshimura Y., Wakabayashi H., et al. Effect of chair-stand exercise on improving urinary and defecation independence in post-stroke rehabilitation patients with sarcopenia. Prog Rehabil Med. 2024 ; 9 : 20240029 doi: 10.2490/prm.20240029.

78. Durstenfeld M. S., Sun K., Tahir P., et al. Use of cardiopulmonary exercise testing to evaluate Long COVID-19 symptoms in adults: a systematic review and meta-analysis. JAMA Netw Open. 2022 ; 5 (10) : e2236057. doi: 10.1001/jamanetworkopen.2022.36057.

79. Singh I., Joseph P., Heerdt P. M., et al. Persistent exertional intolerance after COVID-19: insights from invasive cardiopulmonary exercise testing. Chest. 2022 ; 161 (1) : 54–63. doi: 10.1016/j.chest.2021.08.010.

80. Mancini D. M., Brunjes D. L., Lala A., et al. Use of cardiopulmonary stress testing for patients with unexplained dyspnea post-coronavirus disease. JACC Heart Fail. 2021 ; 9 (12) : 927–937. doi: 10.1016/j.jchf.2021.10.002.

81. Abdallah S. J., Voduc N., Corrales-Medina V. F., et al. Symptoms, pulmonary function, and functional capacity four months after COVID-19. Ann Am Thorac Soc. 2021 ; 18 (11) : 1912–1917. doi: 10.1513/AnnalsATS.202012-1489RL.

82. Szekely Y., Lichter Y., Sadon S., et al. Cardiorespiratory abnormalities in patients recovering from coronavirus disease 2019 J Am Soc Echocardiogr. 2021 ; 34 (12) : 1273–1284.e9. doi: 10.1016/j.echo.2021.08.022.

83. Nopp S., Moik F., Klok F. A., et al. Outpatient pulmonary rehabilitation in patients with long COVID improves exercise capacity, functional status, dyspnea, fatigue, and quality of life. Respiration. 2022 ; 101 (6) : 593–601. doi: 10.1159/000522118.

84. Chen H., Shi H., Liu X., et al. Effect of pulmonary rehabilitation for patients with post-COVID-19: a systematic review and meta-analysis. Front Med (Lausanne). 2022 ; 9 : 837420 doi: 10.3389/fmed.2022.837420.

85. Jimeno-Almazán A., Franco-López F., Buendía-Romero Á., et al. Rehabilitation for post-COVID-19 condition through a supervised exercise intervention: A randomized controlled trial. Scand J Med Sci Sports. 2022 ; 32 (12) : 1791–1801. doi: 10.1111/sms.14240.

86. Compagno S., Palermi S., Pescatore V., et al. Physical and psychological reconditioning in long COVID syndrome: Results of an out-of-hospital exercise and psychological — based rehabilitation program. Int J Cardiol Heart Vasc. 2022 ; 41 : 101080 doi: 10.1016/j.ijcha.2022.101080.

87. Vieira A. G. D. S., Pinto A. C. P. N., Garcia B. M. S. P., et al. Telerehabilitation improves physical function and reduces dyspnoea in people with COVID-19 and post-COVID-19 conditions: a systematic review. J Physiother. 2022 ; 68 (2) : 90–98. doi: 10.1016/j.jphys.2022.03.011.

88. Ahmadi Hekmatikar A. H., Ferreira Júnior J. B., Shahrbanian S., Suzuki K. Functional and psychological changes after exercise training in post-COVID-19 patients discharged from the hospital: a PRISMA-compliant systematic review. Int J Environ Res Public Health. 2022 ; 19 (4) : 2290 doi: 10.3390/ijerph19042290.

89. Тренева Е. В., Булгакова С. В., Фатенков О. В. и др. Возможности применения телемедицинских вмешательств в рамках оказания специализированной эндокринологической помощи населению // Экспериментальная и клиническая гастроэнтерология. — 2024. — № 8. — С. 281–290.

90. Treneva E. V., Bulgakova S. V., Fatenkov O. V., et al. Possibilities of using telemedical interventions in the framework of providing specialized endocrinological care to the population. Experimental and Clinical Gastroenterology. 2024 ; (8) : 281–290 (In Russ.). doi: 10.31146/1682-8658-ecg-228-8-281-290.

91. Ortiz-Alonso J., Bustamante-Ara N., Valenzuela P. L., et al. Effect of a simple exercise program on hospitalization-associated disability in older patients: a randomized controlled trial. J Am Med Dir Assoc. 2020 ; 21 (4) : 531–537.e1. doi: 10.1016/j.jamda.2019.11.027.

92. Troosters T., Probst V. S., Crul T., et al. Resistance training prevents deterioration in quadriceps muscle function during acute exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010 ; 181 (10) : 1072–1077. doi: 10.1164/rccm.200908-1203OC.

93. Liao W. H., Chen J. W., Chen X., et al. Impact of resistance training in subjects with COPD: a systematic review and meta-analysis. Respir Care. 2015 ; 60 (8) : 1130–1145. doi: 10.4187/respcare.03598.

94. Kongsgaard M., Backer V., Jørgensen K., et al. Heavy resistance training increases muscle size, strength and physical function in elderly male COPD-patients — a pilot study. Respir Med. 2004 ; 98 (10) : 1000–1007. doi: 10.1016/j.rmed.2004.03.003.

95. Carneiro M. A. S., Franco C. M. C., Silva A. L., et al. Resistance exercise intervention on muscular strength and power, and functional capacity in acute hospitalized older adults: a systematic review and meta-analysis of 2498 patients in 7 randomized clinical trials. Geroscience. 2021 ; 43 (6) : 2693–2705. doi: 10.1007/s11357-021-00446-7.

96. Verstraeten L. M. G., Reijnierse E. M., Spoelstra T., et al. The impact of mobility limitations on geriatric rehabilitation outcomes: Positive effects of resistance exercise training (RESORT). J Cachexia Sarcopenia Muscle. 2024 ; 15 (5) : 2094–2103 doi: 10.1002/jcsm.13557.

97. Jeong I., Cho E. J., Yook J. S., et al. Mitochondrial adaptations in aging skeletal muscle: implications for resistance exercise training to treat sarcopenia. Life (Basel). 2024 ; 14 (8) : 962 doi: 10.3390/life14080962.

98. Dun Y., Zhang W., Du Y., et al. High-intensity interval training mitigates sarcopenia and suppresses the myoblast senescence regulator EEF1E1. J Cachexia Sarcopenia Muscle. 2024 ; 15 (6) : 2574–2585. doi: 10.1002/jcsm.13600.

99. Leuchtmann A. B., Mueller S. M., Aguayo D., et al. Resistance training preserves high-intensity interval training induced improvements in skeletal muscle capillarization of healthy old men: a randomized controlled trial. Sci Rep. 2020 ; 10 (1) : 6578 doi: 10.1038/s41598-020-63490-x.

100. Dos Santos V. R., Antunes M., Dos Santos L., et al. Effects of different resistance training frequencies on body composition, muscular strength, muscle quality, and metabolic biomarkers in sarcopenic older women. J Strength Cond Res. 2024 ; 38 (9) : e521–e528. doi: 10.1519/JSC.0000000000004827.

101. Perry B. G., Lucas S. J. E. The acute cardiorespiratory and cerebrovascular response to resistance exercise. Sports Med Open. 2021 ; 7 (1) : 36 doi: 10.1186/s40798-021-00314-w.

102. Houchen-Wolloff L., Sandland C. J., Harrison S. L., et al. Ventilatory requirements of quadriceps resistance training in people with COPD and healthy controls. Int J Chron Obstruct Pulmon Dis. 2014 ; 9 : 589–595. doi: 10.2147/COPD.S59164.

103. Probst V. S., Troosters T., Pitta F., et al. Cardiopulmonary stress during exercise training in patients with COPD. Eur Respir J. 2006 ; 27 (6) : 1110–1118. doi: 10.1183/09031936.06.00110605.

104. Rice H., Harrold M., Fowler R., et al. Exercise training for adults hospitalized with an acute respiratory condition: a systematic scoping review. Clin Rehabil. 2020 ; 34 (1) : 45–55. doi: 10.1177/0269215519877930.

105. Beauchamp M. K., Nonoyama M., Goldstein R. S., et al. Interval versus continuous training in individuals with chronic obstructive pulmonary disease — a systematic review. Thorax. 2010 ; 65 (2) : 157–164. doi: 10.1136/thx.2009.123000.

106. Wang D., Hu B., Hu C., et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020 ; 323 (11) : 1061–1069. doi: 10.1001/jama.2020.1585.


Supplementary files

Review

For citations:


Kurmaev D.P., Bulgakova S.V., Treneva E.V., Kosareva O.V., Sharonova L.A., Dolgikh Yu.A. Rehabilitation of physical functions of geriatric patients after COVID-19. Russian Journal of Geriatric Medicine. 2025;(4):512-526. (In Russ.) https://doi.org/10.37586/2686-8636-4-2025-512-526

Views: 61


Creative Commons License
This work is licensed under a Creative Commons BY-NC-SA 4.0.


ISSN 2686-8636 (Print)
ISSN 2686-8709 (Online)