Preview

Russian Journal of Geriatric Medicine

Advanced search

A Geriatric Perspective on the PRISm Spirometry Pattern

https://doi.org/10.37586/2686-8636-4-2025-527-537

Abstract

The PRISm spirometry pattern remains a significant challenge for clinicians due to an incomplete and inconsistent understanding of its interpretation. Nevertheless, a substantial body of evidence has been amassed, suggesting that the identification of a forced expiratory volume in one second (FEV1) / forced vital capacity (FVC) ratio ≥70 % (Gaensler index) and FEV1 <80 % during the evaluation of respiratory function can be regarded as a predictor of an unfavourable prognosis for diverse patient categories. Recent studies have demonstrated a close pathogenic relationship between PRISm and the aging process, thus allowing for the consideration of this pattern as a marker of age-associated changes or biological age of the bronchopulmonary system.

Objective: The present study aims to accumulate and analyse information on the PRISm spirometry pattern, with a view to determining its potential as a diagnostic sign for assessing the state of the respiratory system in relation to age.

Materials and methods. A comprehensive review of the most pertinent and substantial publications concerning the PRISm problem in recent years was conducted. The article presents key information about potential etiological factors of this spirometry pattern, pathomorphological signs, and discusses pathogenic relationships of PRISm with the aging process.

Conclusion. Spirometry remains one of the most informative methods for diagnosing bronchopulmonary diseases; however, the identification of the PRISm pattern, which is not included in  the usual classifications of respiratory system pathology, is not given due attention in real clinical practice. The association between aging and the potential for restoring normal respiratory function in individuals with PRISm introduces new avenues for scientific research in the field of geriatrics, particularly with regard to the development of therapeutic strategies.

About the Authors

V. A. Sergeeva
Saratov State Medical University n.a. V.I. Razumovsky, Healthcare Ministry of Russia
Russian Federation

Sergeeva Victoria Alekseevna

Samara



S. V. Bulgakova
Samara State Medical University, Healthcare Ministry of Russia
Russian Federation

Samara



References

1. Wan E. S., Castaldi P. J., Cho M. H., et al. Epidemiology, genetics, and subtyping of preserved ratio impaired spirometry (PRISm) in COPDGene. Respir Res. 2014 ; 15 (1) : 89 doi: 10.1186/s12931-014-0089-y.

2. Bansal K. L., Bansal S. S., Bansal S., Sahay S. Prevalence of preserved ratio impaired spirometry (PRISM) in patients undergoing spirometry in a medical college hospital. J Med Sci Res. 2023 ; 11 (4) : 296–300. doi: 10.17727/JMSR.2023/11-55.

3. Celli B., Fabbri L., Criner G., et al. Definition and Nomenclature of Chronic Obstructive Pulmonary Disease: Time for Its Revision. Am J Respir Crit Care Med. 2022 ; 206 (11) : 1317–1325. doi: 10.1164/rccm.202204-0671PP.

4. Global Strategy for Prevention, Diagnosis and Management of COPD: 2024 Report [Electronic resource] / Global Initiative for Chronic Obstructive Lung Disease (GOLD). Access mode: https://goldcopd.org/2024-gold-report/, free.

5. Wijnant S. R. A., De Roos E., Kavousi M., et al. Trajectory and mortality of preserved ratio impaired spirometry: the Rotterdam Study. Eur Respir J. 2020 ; 55 (1) : 1901217 doi: 10.1183/13993003.01217-2019.

6. Wan E. S., Balte P., Schwartz J. E., et al. Association between preserved ratio impaired spirometry and clinical outcomes in US Adults. JAMA. 2021 ; 326 (22) : 2287–2298. doi: 10.1001/jama.2021.20939.

7. Choi H., Oak C. H., Jung M. H., et al. Trend of prevalence and characteristics of preserved ratio impaired spirometry (PRISm): nationwide population-based survey between 2010 and 2019 PLoS One. 2024 ; 19 (7) : e0307302. doi: 10.1371/ journal.pone.0307302.

8. Tanabe N., Masuda I., Shiraishi Y., et al. Clinical relevance of multiple confirmed preserved ratio impaired spirometry cases in adults. Respir Investig. 2022 ; 60 (6) : 822–830 doi: 10.1016/j.resinv.2022.08.006.

9. Xu H., Jiang X., Zeng Q., Li R. Associated Factors and Pulmonary Function Outcomes of Preserved Ratio Impaired Spirometry: A Scoping Review. Int J Chron Obstruct Pulmon Dis. 2025 ; 20 : 767–784. doi: 10.2147/COPD.S506115.

10. Miura S., Iwamoto H., Omori K., et al. Preserved ratio impaired spirometry with or without restrictive spirometric abnormality. Sci Rep. 2023 ; 13 (1) : 2988 doi: 10.1038/ s41598-023-29922-0.

11. Marott J. L., Ingebrigtsen T. S., Çolak Y., et al. Trajectory of Preserved Ratio Impaired Spirometry: Natural History and Long-Term Prognosis. Am J Respir Crit Care Med. 2021 ; 204 (8) : 910–920. doi: 10.1164/rccm.202102-0517OC.

12. Shiraishi Y., Shimada T., Tanabe N., et al. The prevalence and physiological impacts of centrilobular and paraseptal emphysema on computed tomography in smokers with preserved ratio impaired spirometry. ERJ Open Res. 2022 ; 8 (2) : 00063–2022. doi: 10.1183/23120541.00063-2022.

13. Huang J., Li W., Sun Y., et al. Preserved Ratio Impaired Spirometry (PRISm): A Global Epidemiological Overview, Radiographic Characteristics, Comorbid Associations, and Differentiation from Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis. 2024 ; 19 : 753–764. doi: 10.2147/COPD.S453086.

14. de Barros Mendes Lopes T., Groth E. E., Veras M., et al. Pre- and postnatal exposure of mice to concentrated urban PM2.5 decreases the number of alveoli and leads to altered lung function at an early stage of life. Environ Pollut. 2018 ; 241 : 511–520. doi: 10.1016/j.envpol.2018.05.055.

15. Shah N. M., Kaltsakas G. Respiratory complications of obesity: from early changes to respiratory failure. Breathe (Sheff ). 2023 ; 19 (1) : 220263 doi: 10.1183/20734735.0263-2022.

16. Dixon A. E., Peters U. The effect of obesity on lung function. Expert Rev Respir Med. 2018 ; 12 (9) : 755–767. doi: 1 0.1080/17476348.2018.1506331.

17. Tashiro H., Kurihara Y., Kuwahara Y., Takahashi K. Impact of obesity in asthma: Possible future therapies. Allergol Int. 2024 ; 73 (1) : 48–57. doi: 10.1016/j.alit.2023.08.007.

18. Vozoris N. T. 1., O’Donnell D. E. Prevalence, risk factors, activity limitation and health care utilization of an obese, population-based sample with chronic obstructive pulmonary disease. Can Respir J. 2012 ; 19 (3) : e18–24. doi: 10.1155/2012/732618.

19. Verberne L. D. M., Leemrijse C. J., Swinkels I. C. S., et al. Overweight in patients with chronic obstructive pulmonary disease needs more attention: a cross-sectional study in general practice. NPJ Prim Care Respir Med. 2017 ; 27 (1) : 63 doi: 10.1038/s41533-017-0065-3.

20. Grigsby M. R., Siddharthan T., Pollard S. L., et al. Low Body Mass Index Is Associated with Higher Odds of COPD and Lower Lung Function in Low- and Middle-Income Countries. COPD. 2019 ; 16 (1) : 58–65. doi: 10.1080/15412555.2019.158 9443

21. Alif S. M., Dharmage S., Benke G., et al. Occupational exposure to solvents and lung function decline: A population based study. Thorax. 2019 ; 74 (7) : 650–658. doi: 10.1136/thoraxjnl-2018-212267.

22. Gan W. Q., Man S. F., Postma D. S., et al. Female smokers beyond the perimenopausal period are at increased risk of chronic obstructive pulmonary disease: a systematic review and meta-analysis. Respir Res. 2006 ; 7 (1) : 52 doi: 10.1186/ 1465-9921-7-52.

23. Prescott E., Bjerg A. M., Andersen P. K., et al. Gender difference in smoking effects on lung function and risk of hospitalization for COPD: results from a Danish longitudinal population study. Eur Respir J. 1997 ; 10 (4) : 822–827.

24. Scanlon P. D., Connett J. E., Waller L. A., et al. Smoking cessation and lung function in mild-to-moderate chronic obstructive pulmonary disease. The Lung Health Study. Am J Respir Crit Care Med. 2000 ; 161 (2 Pt 1) : 381–390. doi: 10.1164/ajrccm.161.2.9901044.

25. Han M. K., Postma D., Mannino D. M., et al . Gender and chronic obstructive pulmonary disease: why it matters. Am J Respir Crit Care Med. 2007 ; 176 (12) : 1179–1184. doi: 10.1164/ rccm.200704-553CC.

26. Burrows B., Bloom J. W., Traver G. A., Cline M. G. The course and prognosis of different forms of chronic airways obstruction in a sample from the general population. N Engl J Med. 1987 ; 317 (21) : 13091314. doi: 10.1056/ NEJM198711193172103.

27. Sergeeva V. A., Bulgakova S. V. Chronic Obstructive Pulmonary Disease:Principles of Treatment in Elderly Patients. Adv. geront. 2025 ; 38 (1) : 87–95. (In Russ.). doi: 10.34922/ AE.2025.38.1.010.

28. Sergeeva V. A., Runikhina N. K. Pathogenetic and Clinical Relationships between Chronic Obstructive Pulmonary Disease, Sarcopenia and Frailty. Russian Journal of Geriatric Medicine. 2024 ; 1 (17) : 40–48. (In Russ.). doi: 10.37586/2686-8636-1-2024-40-48.

29. Lei J., Huang K., Wu S., et al. Heterogeneities and impact profiles of early chronic obstructive pulmonary disease status: findings from the China Pulmonary Health Study. Lancet Reg Health West Pac. 2024 ; 45 : 101021 doi: 10.1016/j. lanwpc.2024.101021.

30. Cestelli L., Johannessen A., Gulsvik A., et al. Risk Factors, Morbidity, and Mortality in Association With Preserved Ratio Impaired Spirometry and Restrictive Spirometric Pattern: Clinical Relevance of Preserved Ratio Impaired Spirometry and Restrictive Spirometric Pattern. Chest. 2025 ; 167 (2) : 548–560. doi: 10.1016/j.chest.2024.08.026.

31. Morales P., Furest I., Marco V., et al. Pathogenesis of the lung in restrictive defects of Klinefelter's syndrome. Chest. 1992 ; 102 (5) : 1550–1552. doi: 10.1378/chest.102.5.1550.

32. Lai Y., Yang T., Zhang X., Li M. Associations between life's essential 8 and preserved ratio impaired spirometry. Sci Rep. 2025 ;15 (1) : 8166 doi: 10.1038/s41598-025-90381-w.

33. Wan E. S., Hokanson J. E., Murphy J. R., et al. Clinical and radiographic predictors of GOLD-unclassified smokers in the COPDGene study. Am J Respir Crit Care Med. 2011 ; 184 (1) : 57–63. doi: 10.1164/rccm.201101-0021OC.

34. Wan E. S., Fortis S., Regan E. A., et al. Longitudinal phenotypes and mortality in preserved ratio impaired spirometry in the COPDGene study. Am J Respir Crit Care Med. 2018 ; 198 (11) : 1397–1405. doi: 10.1164/rccm.201804-0663OC.

35. Kim S. S., Yagihashi K., Stinson D. S., et al. Visual assessment of CT findings in smokers with nonobstructedspirometric abnormalities in the COPDGene® study. Chronic Obstr Pulm Dis. 2014 ; 1 (1) : 88–96. doi: 10.15326/jcopdf.1.1.2013.0001#sthash.L0atdpjM.dpuf.

36. Kim J., Lee C. H., Lee H. Y., Kim H. Association between comorbidities and preserved ratio impaired spirometry: using the Korean national health and nutrition examination survey IV– VI. Respiration. 2022 ; 101 (1) : 25–33. doi: 10.1159/000517599.

37. Roman M. A., Rossiter H. B., Casaburi R. Exercise, ageing and the lung. Eur Respir J. 2016 ; 48 (5) : 1471–1486. doi: 10.1183/13993003.00347-2016.

38. Janssens J. P., Pache J. C., Nicod L. P. Physiological changes in respiratory function associated with ageing. Eur Respir J. 1999 ; 13 (1) : 197–205. doi: 10.1034/j.1399-3003.1999.13a36.x.

39. Sergeeva V. A., Runikhina N. K. Respiratory sarcopenia: aspects of pathogenesis, approaches to diagnosis. Pul’monologiya. 2024 ; 34 (6) : 869–878 (InRuss.). doi: 10.18093/0869-0189-2024-4271.

40. Jackson P., Siddharthan T. The global significance of PRISm: how data from low- and middle-income countries link physiology to inflammation. Eur Respir J. 2020 ; 55 (4) : 2000184 doi: 10.1183/13993003.00184-2020.

41. Wijnant S. R. A., Lahousse L., Brusselle G. G. The global significance of PRISm: how data from low- and middle-income countries link physiology to inflammation. Eur Respir J. 2020 ; 55 : 2000354 doi: 10.1183/13993003.00354-2020.

42. Wannamethee S. G., Shaper A. G., Rumley A., et al. Lung function and risk of type 2 diabetes and fatal and nonfatal major coronary heart disease events: possible associations with inflammation. Diabetes Care. 2010 ; 33 (9) : 1990–1996. doi: 10.2337/dc10-0324.

43. Kalhan R., Tran B. T., Colangelo L. A., et al. Systemic inflammation in young adults is associated with abnormal lung function in middle age. PLoS One. 2010 ; 5 (7) : e11431. doi: 10.1371/journal.pone.0011431. Correction: Systemic Inflammation in Young Adults Is Associated with Abnormal Lung Function in Middle Age. PLoS One. 2010 ; 5 (8): 10.1371/annotation/ed92662b-c566-488d-b090-6c80046d3499. doi: 10.1371/annotation/ed92662b-c566-488d-b090-6c80046d3499.

44. Jin Q., Zhang Z., Zhou T., et al. Preserved ratio impaired spirometry: clinical, imaging and artificial intelligence perspective. J Thorac Dis. 2025 ; 17 (1) : 450–460. doi: 10.21037/jtd-24-1582.

45. Li D., Ruan Z., Xie S., et al. The relationship between preserved ratio impaired spirometry and mortality in the myocardial infarction survivors: a population-based cohort study. BMC Cardiovasc Disord. 2023 ; 23 (1) : 331 doi: 10.1186/s12872-023-03352-2.

46. Kaise T., Sakihara E., Tamaki K., et al. Prevalence and Characteristics of Individuals with Preserved Ratio Impaired Spirometry (PRISm) and/or Impaired Lung Function in Japan: The OCEAN Study. Int J Chron Obstruct Pulmon Dis. 2021 ; 16 : 2665–2675. doi: 10.2147/COPD.S322041.

47. Pellegrino D., Casas-Recasens S., Faner R., et al. When GETomics meets aging and exercise in COPD. Respir Med. 2023 ; 216 : 107294 doi: 10.1016/j.rmed.2023.107294.

48. He D., Yan M., Zhou Y., et al. Preserved Ratio Impaired Spirometry and COPD Accelerate Frailty Progression: Evidence From a Prospective Cohort Study. Chest. 2024 ; 165 (3) : 573– 582 doi: 10.1016/j.chest.2023.07.020.

49. Wijnant S. R. A., Benz E., Luik A. I., et al. Frailty Transitions in Older Persons With Lung Function Impairment: A Population-Based Study. J Gerontol A BiolSci Med Sci. 2023 ; 78 (2) : 349–356. doi: 10.1093/gerona/glac202.

50. Anami K., Murata S., Nakano H., et al. Physical performance in relation to preserved ratio impaired spirometry: a cross-sectional study of community-dwelling older Japanese adults. Sci Rep. 2021 ; 11 (1) : 17411 doi: 10.1038/ s41598-021-96830-6.

51. Kakehi S., Wakabayashi H., Inuma H., et al. Rehabilitation Nutrition and Exercise Therapy for Sarcopenia. World J Mens Health. 2022 ; 40 (1) : 1–10. doi: 10.5534/wjmh.200190.

52. Tkacheva O. N., Runikhina N. K., Malaya I. P., et al. Geriatric Rehabilitation in Patients with Frailty: Interim Results of the POSTSCRIPTUM. An Open Prospective Study. Bulletin of Rehabilitation Medicine. 2024 ; 23 (6) : 8–18.(In Russ.). doi: 10.38025/2078-1962-2024-23-6-8-18.

53. Liwsrisakun C., Chaiwong W., Deesomchok A., et al. The Role of Impulse Oscillometry in Detection of Preserved Ratio Impaired Spirometry (PRISm). Adv Respir Med. 2025 ; 93 (1) : 2 doi: 10.3390/arm93010002.


Supplementary files

Review

For citations:


Sergeeva V.A., Bulgakova S.V. A Geriatric Perspective on the PRISm Spirometry Pattern. Russian Journal of Geriatric Medicine. 2025;(4):527-537. (In Russ.) https://doi.org/10.37586/2686-8636-4-2025-527-537

Views: 25


Creative Commons License
This work is licensed under a Creative Commons BY-NC-SA 4.0.


ISSN 2686-8636 (Print)
ISSN 2686-8709 (Online)