Preview

Russian Journal of Geriatric Medicine

Advanced search

Osteoporosis and cognitive impairment in older adults: what is the link?

https://doi.org/10.37586/2686-8636-1-2022-24-31

Abstract

Osteoporosis and various cognitive disorders occupy a special place among a number of specific pathological conditions associated with age. Epidemiologically these two conditions are closely related thus the presence of cognitive impairment increases the risk of osteoporosis; and, visa versa, dementia, in particular, caused by Alzheimer's disease, and is more often detected among patients with osteoporosis. Osteoporosis in patients with dementia is an extremely serious problem, since the development of osteoporotic fractures is fraught with a sharp deterioration in cognitive status and a significant increase in disability and mortality. The connection between changes in bone mineral density and cognitive status in older adults is not well understood. The review presents data from non-clinical and clinical studies that describe common genetic and metabolic factors underlying the pathogenesis of the pathological conditions under discussion, which should be taken into account when planning future dementia and osteoporosis clinical trials.

About the Authors

M. A. Cherdak
Pirogov Russian National Research Medical University, Russian Gerontology Research and Clinical Centre
Russian Federation

 MD, PhD, Assistant Professor of Department of aging diseases, Faculty of additional professional education

+7(926)5604289 

 Moscow 



E. N. Dudinskaya
Pirogov Russian National Research Medical University, Russian Gerontology Research and Clinical Centre
Russian Federation

MD, PhD, Head of age-related endocrine and metabolic disorders laboratory

+7(903)191-46-90 

 Moscow 



References

1. Golounina O.O., Runova G.E., Fadeyev V.V. Osteomalacia in practice of endocrinologist: etiology, pathogenesis, differential diagnosis with osteoporosis. Osteoporosis and Bone Diseases. 2019; 22(2): 23–31. (In Russ.) https://doi.org/10.14341/osteo12117

2. Dudinskaya E.N., Brailova N.V., Kuznetsova V.A., Tkacheva O.N. Osteoporosis in the elderly. Osteoporosis and bone diseases. 2019; 22(3): 34–40. (In Russ.) https://doi.org/10.14341/osteo1235

3. Salari N., Darvishi N., Bartina Y. et al. Global prevalence of osteoporosis among the world older adults: a comprehensive systematic review and meta-analysis. J Orthop Surg Res 2021; 16: 669. https://doi.org/10.1186/s13018-021-02821-8

4. Bogolepova A.N., Vasenina E.E., Gomzyakova N.A. et al. Clinical Guidelines for Cognitive Disorders in Elderly and Older Patients. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2021; 121(10–3): 6–137. (In Russ.) https://doi.org/10.17116/jnevro20211211036

5. Cenko B., Ozgo E., Rapaport P., Mukadam N. Prevalence of dementia in older adults in Central and Eastern Europe: a systematic review and meta-analysis. Psychiatry Int. 2021; 2: 191–210. https://doi.org/10.3390/psychiatryint2020015

6. GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. The Lancet Public Health. 2022. ISSN 2468-2667. https://doi.org/10.1016/S2468-2667(21)00249-8.c

7. Kapasi A., DeCarli C., Schneider J.A. Impact of multiple pathologies on the threshold for clinically overt dementia. Acta Neuropathol. 2017; 134(2): 171–186. https://doi.org/10.1007/s00401-017-1717-7.

8. Brenowitz W.D., Hubbard R.A., Keene C.D., et al. Mixed neuropathologies and estimated rates of clinical progression in a large autopsy sample. Alzheimers Dement. 2017; 13(6): 654–662. https://doi.org/10.1016/j.jalz.2016.09.015.

9. 2021 Alzheimer's disease facts and figures. Alzheimers Dement. 2021; 17(3): 327–406. https://doi.org/10.1002/alz.12328.

10. Ryan J.J., McCloy C., Rundquist P., et al. Fall risk assessment among older adults with mild Alzheimer disease. J Geriatr Phys Ther. 2011; 34(1): 19–27. https://doi.org/10.1519/JPT.0b013e31820aa829.

11. Liu D., Zhou H., Tao Y., et al. Alzheimer's Disease is Associated with Increased Risk of Osteoporosis: The Chongqing Aging Study. Curr Alzheimer Res. 2016; 13(10): 1165–1172. https://doi.org/ 10.2174/15672050113109990149.

12. Fernando E., Fraser M., Hendriksen J., Kim C.H., MuirHunter S.W. Risk Factors Associated with Falls in Older Adults with Dementia: A Systematic Review. Physiother Can. 2017; 69(2): 161–170. https://doi.org/10.3138/ptc.2016-14

13. Stenhagen M., Ekström H., Nordell E., Elmståhl S. Falls in the general elderly population: a 3- and 6- year prospective study of risk factors using data from the longitudinal population study “Good ageing in Skane”. BMC Geriatr. 2013; 13: 81. https://doi.org/10.1186/1471-2318-13-81.

14. Zabolotskikh I.B., Gorobets E.S., Grigor'ev E.V., et al. Perioperative management of geriatric patients. Russian Journal of Anaesthesiology and Reanimatology. 2018; (1): 5–20. (In Russ.) https://doi.org/10.17116/anaesthesiology201801-0215

15. Enemark M., Midttun M., Winge K. Evaluating Outcomes for Older Patients with Parkinson's Disease or Dementia with Lewy Bodies who have been Hospitalised for Hip Fracture Surgery: Potential Impact of Drug Administration. Drugs Aging. 2017; 34(5): 387–392. https://doi.org/10.1007/s40266-017-0454-x.

16. Tan Z.S., Seshadri S., Beiser A., et al. Bone mineral density and the risk of Alzheimer disease. Arch Neurol. 2005; 62(1): 107–111. https://doi.org/10.1001/archneur.62.1.107.

17. Amouzougan A., Lafaie L., Marotte H., et al. High prevalence of dementia in women with osteoporosis. Joint Bone Spine. 2017; 84(5): 611–614. https://doi.org/10.1016/j.jbspin.2016.08.002.

18. Chang K.H., Chung C.J., Lin C.L., et al. Increased risk of dementia in patients with osteoporosis: a population-based retrospective cohort analysis. Age (Dordr). 2014; 36(2): 967–975. https://doi.org/10.1007/s11357-013-9608-x.

19. Kang H.G., Park H.Y., Ryu H.U., Suk S.H. Bone mineral loss and cognitive impairment: The PRESENT project. Medicine (Baltimore). 2018; 97(41): e12755. https://doi.org/10.1097/MD.0000000000012755.

20. Chen Y.H., Lo R.Y. Alzheimer's disease and osteoporosis. Ci Ji Yi Xue Za Zhi. 2017; 29(3): 138–142. https://doi.org/10.4103/tcmj.tcmj_54_17.

21. Downey C.L., Young A., Burton E.F., et al. Dementia and osteoporosis in a geriatric population: Is there a common link? World J Orthop. 2017; 8(5): 412–423. https://doi.org/10.5312/wjo.v8.i5.412

22. Dudinskaya E.N., Tkacheva O.N. Vitamin D role in arterial hypertension development. Cardiovascular Therapy and Prevention. 2012; 11(3): 77–81. (In Russ.) https://doi.org/10.15829/1728-8800-2012-3-77-81

23. Annweiler C., Schott A.M., Allali G., et al. Association of vitamin D deficiency with cognitive impairment in older women: cross-sectional study. Neurology. 2010; 74(1): 27–32. https://doi.org/10.1212/WNL.0b013e3181beecd3.

24. Afzal S., Bojesen S.E., Nordestgaard B.G. Reduced 25-hydroxyvitamin D and risk of Alzheimer's disease and vascular dementia. Alzheimers Dement. 2014; 10(3): 296–302. https://doi.org/10.1016/j.jalz.2013.05.1765.

25. Moon J.H., Lim S., Han J.W., et al. Serum 25-hydroxyvitamin D level and the risk of mild cognitive impairment and dementia: the Korean Longitudinal Study on Health and Aging (KLoSHA). Clin Endocrinol (Oxf). 2015; 83(1): 36–42. https://doi.org/10.1111/cen.12733.

26. Littlejohns T.J., Henley W.E., Lang I.A., et al. Vitamin D and the risk of dementia and Alzheimer disease. Neurology. 2014; 83(10): 920–928. https://doi.org/10.1212/WNL.0000000000000755.

27. Annweiler C., Beauchet O. Vitamin D-mentia: randomized clinical trials should be the next step. Neuroepidemiology. 2011; 37(3–4): 249–258. https://doi.org/10.1159/000334177.

28. Nissou M.F., Brocard J., El Atifi M., et al. The transcriptomic response of mixed neuron-glial cell cultures to 1,25-dihydroxyvitamin d3 includes genes limiting the progression of neurodegenerative diseases. J Alzheimers Dis. 2013; 35(3): 553–564. https://doi.org/10.3233/JAD-122005.

29. Masoumi A., Goldenson B., Ghirmai S., et al. 1alpha,25-dihydroxyvitamin D3 interacts with curcuminoids to stimulate amyloid-beta clearance by macrophages of Alzheimer's disease patients. J Alzheimers Dis. 2009; 17(3): 703–717. https://doi.org/10.3233/JAD-2009-1080.

30. Azuma K., Ouchi Y., Inoue S. Vitamin K: novel molecular mechanisms of action and its roles in osteoporosis. Geriatr Gerontol Int. 2014; 14(1): 1–7. https://doi.org/10.1111/ggi.12060.

31. Allison A.C. The possible role of vitamin K deficiency in the pathogenesis of Alzheimer's disease and in augmenting brain damage associated with cardiovascular disease. Med Hypotheses. 2001; 57(2): 151–155. https://doi.org/10.1054/mehy.2001.1307.

32. Alisi L., Cao R., De Angelis C., et al. The Relationships Between Vitamin K and Cognition: A Review of Current Evidence. Front Neurol. 2019; 10: 239. https://doi.org/10.3389/fneur.2019.00239

33. Mongkhon P., Naser A.Y., Fanning L., et al. Oral anticoagulants and risk of dementia: A systematic review and metaanalysis of observational studies and randomized controlled trials. Neurosci Biobehav Rev. 2019; 96: 1–9. https://doi.org/10.1016/j.neubiorev.2018.10.025.

34. Tamadon-Nejad S., Ouliass B., Rochford J., Ferland G. Vitamin K Deficiency Induced by Warfarin Is Associated With Cognitive and Behavioral Perturbations, and Alterations in Brain Sphingolipids in Rats. Front Aging Neurosci. 2018; 10: 213. https://doi.org/10.3389/fnagi.2018.00213.

35. Zhang C., Gu Z.C., Shen L., et al. Non-vitamin K Antagonist Oral Anticoagulants and Cognitive Impairment in Atrial Fibrillation: Insights From the Meta-Analysis of Over 90,000 Patients of Randomized Controlled Trials and Real-World Studies. Front Aging Neurosci. 2018; 10: 258. https://doi.org/10.3389/fnagi.2018.00258.

36. Peterlik M., Kállay E., Cross H.S. Calcium nutrition and extracellular calcium sensing: relevance for the pathogenesis of osteoporosis, cancer and cardiovascular diseases. Nutrients. 2013; 5(1): 302–327. https://doi.org/10.3390/nu5010302.

37. Berger C., Almohareb O., Langsetmo L., et al. CaMos Research Group. Characteristics of hyperparathyroid states in the Canadian multicentre osteoporosis study (CaMos) and relationship to skeletal markers. Clin Endocrinol (Oxf). 2015; 82(3): 359–368. https://doi.org/10.1111/cen.12569.

38. Lourida I., Thompson-Coon J., Dickens C.M., et al. Parathyroid hormone, cognitive function and dementia: a systematic review. PLoS One. 2015; 10(5): e0127574. https://doi.org/10.1371/journal.pone.0127574

39. Björkman M.P., Sorva A.J., Tilvis R.S. Does elevated parathyroid hormone concentration predict cognitive decline in older people? Aging Clin Exp Res. 2010; 22(2): 164–169. https://doi.org/10.1007/BF03324791.

40. Levin V.A., Jiang X., Kagan R. Estrogen therapy for osteoporosis in the modern era. Osteoporos Int. 2018; 29(5): 1049–1055. https://doi.org/10.1007/s00198-018-4414-z.

41. Driscoll I., Resnick S.M. Testosterone and cognition in normal aging and Alzheimer's disease: an update. Curr Alzheimer Res. 2007; 4(1): 33–45. https://doi.org/10.2174/156720507779939878.

42. Zhou C., Wu Q., Wang Z., et al. The Effect of Hormone Replacement Therapy on Cognitive Function in Female Patients With Alzheimer's Disease: A Meta-Analysis. Am J Alzheimers Dis Other Demen. 2020; 35: 1533317520938585. https://doi.org/10.1177/1533317520938585.

43. Farquhar C., Marjoribanks J., Lethaby A., et al. Long term hormone therapy for perimenopausal and postmenopausal women. Cochrane Database Syst Rev. 2009; (2): CD004143. https://doi.org/10.1002/14651858.CD004143.pub3.

44. George S., Petit G.H., Gouras G.K., et al. Nonsteroidal selective androgen receptor modulators and selective estrogen receptor β agonists moderate cognitive deficits and amyloid-β levels in a mouse model of Alzheimer's disease. ACS Chem Neurosci. 2013; 4(12): 1537–1548. https://doi.org/10.1021/cn400133s.

45. Malashenkova I.K., Krynskiy S.A., Mamoshina M.V., Didkovskiy N.A. АРОЕ gene polymorphism: the impact of АРОЕ4 allele on systemic inflammation and its role in the pathogenesis of Аlzheimer’s disease. Medical Immunology (Russia). 2018; 20(3): 303–312. (In Russ.) https://doi.org/10.15789/1563-0625-2018-3-303-312)

46. Champagne D., Rochford J., Poirier J. Effect of apolipoprotein E deficiency on reactive sprouting in the dentate gyrus of the hippocampus following entorhinal cortex lesion: role of the astroglial response. Exp Neurol. 2005; 194(1): 31–42. https://doi.org/10.1016/j.expneurol.2005.01.016.

47. Hawkes C.A., Sullivan P.M., Hands S., et al. Disruption of arterial perivascular drainage of amyloid-β from the brains of mice expressing the human APOE ε4 allele. PLoS One. 2012; 7(7): e41636. https://doi.org/10.1371/journal.pone.0041636.

48. Noguchi T., Ebina K., Hirao M., et al. Apolipoprotein E plays crucial roles in maintaining bone mass by promoting osteoblast differentiation via ERK1/2 pathway and by suppressing osteoclast differentiation via c-Fos, NFATc1, and NF-κB pathway. Biochem Biophys Res Commun. 2018; 503(2): 644–650. https://doi.org/10.1016/j.bbrc.2018.06.055.

49. Bagger Y.Z., Rasmussen H.B., Alexandersen P., et al. PERF study group. Links between cardiovascular disease and osteoporosis in postmenopausal women: serum lipids or atherosclerosis per se? Osteoporos Int. 2007; 18(4): 505–512. https://doi.org/10.1007/s00198-006-0255-2.

50. Parhami F., Garfinkel A., Demer L.L. Role of lipids in osteoporosis. Arterioscler Thromb Vasc Biol. 2000; 20(11): 2346–2348. https://doi.org/10.1161/01.atv.20.11.2346.

51. Peter I., Crosier M.D., Yoshida M., et al. Associations of APOE gene polymorphisms with bone mineral density and fracture risk: a meta-analysis. Osteoporos Int. 2011; 22(4): 1199–1209. https://doi.org/10.1007/s00198-010-1311-5

52. Macdonald H.M., McGuigan F.E., Lanham-New S.A., et al. Vitamin K1 intake is associated with higher bone mineral density and reduced bone resorption in early postmenopausal Scottish women: no evidence of gene-nutrient interaction with apolipoprotein E polymorphisms. Am J Clin Nutr. 2008; 87(5): 1513–1520. https://doi.org/10.1093/ajcn/87.5.1513.

53. Pluijm S.M., Dik M.G., Jonker C., et al. Effects of gender and age on the association of apolipoprotein E epsilon4 with bone mineral density, bone turnover and the risk of fractures in older people. Osteoporos Int. 2002; 13(9): 701–709. https://doi.org/10.1007/s001980200096.

54. von Mühlen D.G., Barrett-Connor E., Schneider D.L., et al. Osteoporosis and apolipoprotein E genotype in older adults: the Rancho Bernardo study. Osteoporos Int. 2001; 12(4): 332–335. https://doi.org/10.1007/s001980170124.

55. Schoofs M.W., van der Klift M., Hofman A., van Duijn C.M., Stricker B.H., Pols H.A., Uitterlinden A.G. ApoE gene polymorphisms, BMD, and fracture risk in elderly men and women: the Rotterdam study. J Bone Miner Res. 2004 Sep; 19(9): 1490–1496. https://doi.org/10.1359/JBMR.040605.

56. Belaya Z.E., Belova K.Yu., Biryukova E.V. et al. Federal clinical guidelines for diagnosis, treatment and prevention of osteoporosis. Osteoporosis and Bone Diseases. 2021; 24(2): 4–47. (In Russ.) https://doi.org/10.14341/osteo12930

57. Boonen S., Adachi J.D., Man Z., et al. Treatment with denosumab reduces the incidence of new vertebral and hip fractures in postmenopausal women at high risk. J Clin Endocrinol Metab. 2011; 96(6): 1727–1736. https://doi.org/10.1210/jc.2010-2784

58. Chotiyarnwong P., McCloskey E., Eastell R., et al. A Pooled Analysis of Fall Incidence From Placebo-Controlled Trials of Denosumab. J Bone Miner Res. 2020; 35(6): 1014–1021. DOI: 10.1002/jbmr.3972

59. Vandenbroucke A., Luyten F.P., Flamaing J., Gielen E. Pharmacological treatment of osteoporosis in the oldest old. Clin Interv Aging. 2017; 12: 1065–1077. https://doi.org/10.2147/CIA.S131023.


Review

For citations:


Cherdak M.A., Dudinskaya E.N. Osteoporosis and cognitive impairment in older adults: what is the link? Russian Journal of Geriatric Medicine. 2022;(1):24-31. (In Russ.) https://doi.org/10.37586/2686-8636-1-2022-24-31

Views: 738


Creative Commons License
This work is licensed under a Creative Commons BY-NC-SA 4.0.


ISSN 2686-8636 (Print)
ISSN 2686-8709 (Online)