Остеопороз и когнитивные расстройства у пожилых: есть ли связь?
Аннотация
Старение ассоциировано с развитием ряда специфических патологических состояний, среди которых особое место занимают остеопороз и различные когнитивные расстройства. Эпидемиологически установлено, что два этих состояния тесно связаны: наличие когнитивных нарушений повышает риск остеопороза, а среди пациентов с остеопорозом чаще выявляется деменция, в частности, вызванная болезнью Альцгеймера. Остеопороз у пациентов с деменцией представляет собой чрезвычайно серьезную проблему, поскольку развитие остеопоротических переломов чревато резким усугублением когнитивного статуса и существенным нарастанием инвалидности и смертности. Связь между изменением минеральной плотности костей и когнитивным статусом у пожилых изучена недостаточно. В обзоре приведены данные неклинических и клинических исследований, описывающих общие генетические и метаболические факторы, лежащие в основе патогенеза обсуждаемых патологических состояний, которые имеет смысл учитывать при планировании будущих клинических исследований как деменции, так и остеопороза.
Об авторах
М. А. ЧердакРоссия
канд. мед. наук, ассистент кафедры болезней старения ФДПО
телефон: +7(926)5604289
Москва
Е. Н. Дудинская
Россия
канд. мед. наук, заведующая лабораторией возрастных метаболических и эндокринных нарушений
телефон: +7(903)191-46-90
Москва
Список литературы
1. Голоунина О.О., Рунова Г.Е., Фадеев В.В. Остеомаляция в практике эндокринолога: этиология, патогенез, дифференциальная диагностика с остеопорозом // Остеопороз и остеопатии. — 2019. — Т22. — №.2 — С.23-31. https://doi.org/10.14341/osteo12117
2. Дудинская Е.Н., Браилова Н.В., Кузнецова В.А., Ткачева О.Н. Остеопороз у пожилых пациентов // Остеопороз и остеопатии. — 2019. — Т. 22. — №3 — С.34-40. https://doi.org/10.14341/osteo1235
3. Salari N., Darvishi N., Bartina Y. et al. Global prevalence of osteoporosis among the world older adults: a comprehensive systematic review and meta-analysis. J Orthop Surg Res 2021; 16: 669. https://doi.org/10.1186/s13018-021-02821-8
4. Боголепова А.Н., Васенина Е.Е., Гомзякова Н.А. и др. Клинические рекомендации «Когнитивные расстройства у пациентов пожилого и старческого возраста» // Журнал неврологии и психиатрии им. С.С. Корсакова. — 2021. — Т.121. — №(10–3) — С.6–137. https://doi.org/10.17116/jnevro20211211036
5. Cenko B., Ozgo E., Rapaport P., Mukadam N. Prevalence of dementia in older adults in Central and Eastern Europe: a systematic review and meta-analysis. Psychiatry Int. 2021; 2: 191–210. https://doi.org/10.3390/psychiatryint2020015
6. GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. The Lancet Public Health. 2022. ISSN 2468-2667. https://doi.org/10.1016/S2468-2667(21)00249-8.c
7. Kapasi A., DeCarli C., Schneider J.A. Impact of multiple pathologies on the threshold for clinically overt dementia. Acta Neuropathol. 2017; 134(2): 171–186. https://doi.org/10.1007/s00401-017-1717-7.
8. Brenowitz W.D., Hubbard R.A., Keene C.D., et al. Mixed neuropathologies and estimated rates of clinical progression in a large autopsy sample. Alzheimers Dement. 2017; 13(6): 654–662. https://doi.org/10.1016/j.jalz.2016.09.015.
9. 2021 Alzheimer's disease facts and figures. Alzheimers Dement. 2021; 17(3): 327–406. https://doi.org/10.1002/alz.12328.
10. Ryan J.J., McCloy C., Rundquist P., et al. Fall risk assessment among older adults with mild Alzheimer disease. J Geriatr Phys Ther. 2011; 34(1): 19–27. https://doi.org/10.1519/JPT.0b013e31820aa829.
11. Liu D., Zhou H., Tao Y., et al. Alzheimer's Disease is Associated with Increased Risk of Osteoporosis: The Chongqing Aging Study. Curr Alzheimer Res. 2016; 13(10): 1165–1172. https://doi.org/ 10.2174/15672050113109990149.
12. Fernando E., Fraser M., Hendriksen J., Kim C.H., MuirHunter S.W. Risk Factors Associated with Falls in Older Adults with Dementia: A Systematic Review. Physiother Can. 2017; 69(2): 161–170. https://doi.org/10.3138/ptc.2016-14
13. Stenhagen M., Ekström H., Nordell E., Elmståhl S. Falls in the general elderly population: a 3- and 6- year prospective study of risk factors using data from the longitudinal population study “Good ageing in Skane”. BMC Geriatr. 2013; 13: 81. https://doi.org/10.1186/1471-2318-13-81.
14. Заболотских И.Б., Горобец Е.С., Григорьев Е.В., и др. Периоперационное ведение пациентов пожилого и старческого возраста // Анестезиология и реаниматология. — 2018. — Т. 1 — C. 5–20. https://doi.org/10.17116/anaesthesiology201801-0215
15. Enemark M., Midttun M., Winge K. Evaluating Outcomes for Older Patients with Parkinson's Disease or Dementia with Lewy Bodies who have been Hospitalised for Hip Fracture Surgery: Potential Impact of Drug Administration. Drugs Aging. 2017; 34(5): 387–392. https://doi.org/10.1007/s40266-017-0454-x.
16. Tan Z.S., Seshadri S., Beiser A., et al. Bone mineral density and the risk of Alzheimer disease. Arch Neurol. 2005; 62(1): 107–111. https://doi.org/10.1001/archneur.62.1.107.
17. Amouzougan A., Lafaie L., Marotte H., et al. High prevalence of dementia in women with osteoporosis. Joint Bone Spine. 2017; 84(5): 611–614. https://doi.org/10.1016/j.jbspin.2016.08.002.
18. Chang K.H., Chung C.J., Lin C.L., et al. Increased risk of dementia in patients with osteoporosis: a population-based retrospective cohort analysis. Age (Dordr). 2014; 36(2): 967–975. https://doi.org/10.1007/s11357-013-9608-x.
19. Kang H.G., Park H.Y., Ryu H.U., Suk S.H. Bone mineral loss and cognitive impairment: The PRESENT project. Medicine (Baltimore). 2018; 97(41): e12755. https://doi.org/10.1097/MD.0000000000012755.
20. Chen Y.H., Lo R.Y. Alzheimer's disease and osteoporosis. Ci Ji Yi Xue Za Zhi. 2017; 29(3): 138–142. https://doi.org/10.4103/tcmj.tcmj_54_17.
21. Downey C.L., Young A., Burton E.F., et al. Dementia and osteoporosis in a geriatric population: Is there a common link? World J Orthop. 2017; 8(5): 412–423. https://doi.org/10.5312/wjo.v8.i5.412
22. Дудинская Е.Н., Ткачева О.Н. Роль витамина D в развитии артериальной гипертензии // Кардиоваскулярная терапия и профилактика. — 2012. — T. 11 — № 3 — C.77–81. https://doi.org/10.15829/1728-8800-2012-3-77-81
23. Annweiler C., Schott A.M., Allali G., et al. Association of vitamin D deficiency with cognitive impairment in older women: cross-sectional study. Neurology. 2010; 74(1): 27–32. https://doi.org/10.1212/WNL.0b013e3181beecd3.
24. Afzal S., Bojesen S.E., Nordestgaard B.G. Reduced 25-hydroxyvitamin D and risk of Alzheimer's disease and vascular dementia. Alzheimers Dement. 2014; 10(3): 296–302. https://doi.org/10.1016/j.jalz.2013.05.1765.
25. Moon J.H., Lim S., Han J.W., et al. Serum 25-hydroxyvitamin D level and the risk of mild cognitive impairment and dementia: the Korean Longitudinal Study on Health and Aging (KLoSHA). Clin Endocrinol (Oxf). 2015; 83(1): 36–42. https://doi.org/10.1111/cen.12733.
26. Littlejohns T.J., Henley W.E., Lang I.A., et al. Vitamin D and the risk of dementia and Alzheimer disease. Neurology. 2014; 83(10): 920–928. https://doi.org/10.1212/WNL.0000000000000755.
27. Annweiler C., Beauchet O. Vitamin D-mentia: randomized clinical trials should be the next step. Neuroepidemiology. 2011; 37(3–4): 249–258. https://doi.org/10.1159/000334177.
28. Nissou M.F., Brocard J., El Atifi M., et al. The transcriptomic response of mixed neuron-glial cell cultures to 1,25-dihydroxyvitamin d3 includes genes limiting the progression of neurodegenerative diseases. J Alzheimers Dis. 2013; 35(3): 553–564. https://doi.org/10.3233/JAD-122005.
29. Masoumi A., Goldenson B., Ghirmai S., et al. 1alpha,25-dihydroxyvitamin D3 interacts with curcuminoids to stimulate amyloid-beta clearance by macrophages of Alzheimer's disease patients. J Alzheimers Dis. 2009; 17(3): 703–717. https://doi.org/10.3233/JAD-2009-1080.
30. Azuma K., Ouchi Y., Inoue S. Vitamin K: novel molecular mechanisms of action and its roles in osteoporosis. Geriatr Gerontol Int. 2014; 14(1): 1–7. https://doi.org/10.1111/ggi.12060.
31. Allison A.C. The possible role of vitamin K deficiency in the pathogenesis of Alzheimer's disease and in augmenting brain damage associated with cardiovascular disease. Med Hypotheses. 2001; 57(2): 151–155. https://doi.org/10.1054/mehy.2001.1307.
32. Alisi L., Cao R., De Angelis C., et al. The Relationships Between Vitamin K and Cognition: A Review of Current Evidence. Front Neurol. 2019; 10: 239. https://doi.org/10.3389/fneur.2019.00239
33. Mongkhon P., Naser A.Y., Fanning L., et al. Oral anticoagulants and risk of dementia: A systematic review and metaanalysis of observational studies and randomized controlled trials. Neurosci Biobehav Rev. 2019; 96: 1–9. https://doi.org/10.1016/j.neubiorev.2018.10.025.
34. Tamadon-Nejad S., Ouliass B., Rochford J., Ferland G. Vitamin K Deficiency Induced by Warfarin Is Associated With Cognitive and Behavioral Perturbations, and Alterations in Brain Sphingolipids in Rats. Front Aging Neurosci. 2018; 10: 213. https://doi.org/10.3389/fnagi.2018.00213.
35. Zhang C., Gu Z.C., Shen L., et al. Non-vitamin K Antagonist Oral Anticoagulants and Cognitive Impairment in Atrial Fibrillation: Insights From the Meta-Analysis of Over 90,000 Patients of Randomized Controlled Trials and Real-World Studies. Front Aging Neurosci. 2018; 10: 258. https://doi.org/10.3389/fnagi.2018.00258.
36. Peterlik M., Kállay E., Cross H.S. Calcium nutrition and extracellular calcium sensing: relevance for the pathogenesis of osteoporosis, cancer and cardiovascular diseases. Nutrients. 2013; 5(1): 302–327. https://doi.org/10.3390/nu5010302.
37. Berger C., Almohareb O., Langsetmo L., et al. CaMos Research Group. Characteristics of hyperparathyroid states in the Canadian multicentre osteoporosis study (CaMos) and relationship to skeletal markers. Clin Endocrinol (Oxf). 2015; 82(3): 359–368. https://doi.org/10.1111/cen.12569.
38. Lourida I., Thompson-Coon J., Dickens C.M., et al. Parathyroid hormone, cognitive function and dementia: a systematic review. PLoS One. 2015; 10(5): e0127574. https://doi.org/10.1371/journal.pone.0127574
39. Björkman M.P., Sorva A.J., Tilvis R.S. Does elevated parathyroid hormone concentration predict cognitive decline in older people? Aging Clin Exp Res. 2010; 22(2): 164–169. https://doi.org/10.1007/BF03324791.
40. Levin V.A., Jiang X., Kagan R. Estrogen therapy for osteoporosis in the modern era. Osteoporos Int. 2018; 29(5): 1049–1055. https://doi.org/10.1007/s00198-018-4414-z.
41. Driscoll I., Resnick S.M. Testosterone and cognition in normal aging and Alzheimer's disease: an update. Curr Alzheimer Res. 2007; 4(1): 33–45. https://doi.org/10.2174/156720507779939878.
42. Zhou C., Wu Q., Wang Z., et al. The Effect of Hormone Replacement Therapy on Cognitive Function in Female Patients With Alzheimer's Disease: A Meta-Analysis. Am J Alzheimers Dis Other Demen. 2020; 35: 1533317520938585. https://doi.org/10.1177/1533317520938585.
43. Farquhar C., Marjoribanks J., Lethaby A., et al. Long term hormone therapy for perimenopausal and postmenopausal women. Cochrane Database Syst Rev. 2009; (2): CD004143. https://doi.org/10.1002/14651858.CD004143.pub3.
44. George S., Petit G.H., Gouras G.K., et al. Nonsteroidal selective androgen receptor modulators and selective estrogen receptor β agonists moderate cognitive deficits and amyloid-β levels in a mouse model of Alzheimer's disease. ACS Chem Neurosci. 2013; 4(12): 1537–1548. https://doi.org/10.1021/cn400133s.
45. Малашенкова И.К., Крынский С.А., Мамошина М.В., Дидковский Н.А. Полиморфизм гена АРОЕ: влияние аллеля АРОЕ4 на системное воспаление и его роль в патогенезе болезни Альцгеймера // Медицинская иммунология. — 2018. — T.20. — №3 — C.303–312. https://doi.org/10.15789/1563-0625-2018-3-303-312)
46. Champagne D., Rochford J., Poirier J. Effect of apolipoprotein E deficiency on reactive sprouting in the dentate gyrus of the hippocampus following entorhinal cortex lesion: role of the astroglial response. Exp Neurol. 2005; 194(1): 31–42. https://doi.org/10.1016/j.expneurol.2005.01.016.
47. Hawkes C.A., Sullivan P.M., Hands S., et al. Disruption of arterial perivascular drainage of amyloid-β from the brains of mice expressing the human APOE ε4 allele. PLoS One. 2012; 7(7): e41636. https://doi.org/10.1371/journal.pone.0041636.
48. Noguchi T., Ebina K., Hirao M., et al. Apolipoprotein E plays crucial roles in maintaining bone mass by promoting osteoblast differentiation via ERK1/2 pathway and by suppressing osteoclast differentiation via c-Fos, NFATc1, and NF-κB pathway. Biochem Biophys Res Commun. 2018; 503(2): 644–650. https://doi.org/10.1016/j.bbrc.2018.06.055.
49. Bagger Y.Z., Rasmussen H.B., Alexandersen P., et al. PERF study group. Links between cardiovascular disease and osteoporosis in postmenopausal women: serum lipids or atherosclerosis per se? Osteoporos Int. 2007; 18(4): 505–512. https://doi.org/10.1007/s00198-006-0255-2.
50. Parhami F., Garfinkel A., Demer L.L. Role of lipids in osteoporosis. Arterioscler Thromb Vasc Biol. 2000; 20(11): 2346–2348. https://doi.org/10.1161/01.atv.20.11.2346.
51. Peter I., Crosier M.D., Yoshida M., et al. Associations of APOE gene polymorphisms with bone mineral density and fracture risk: a meta-analysis. Osteoporos Int. 2011; 22(4): 1199–1209. https://doi.org/10.1007/s00198-010-1311-5
52. Macdonald H.M., McGuigan F.E., Lanham-New S.A., et al. Vitamin K1 intake is associated with higher bone mineral density and reduced bone resorption in early postmenopausal Scottish women: no evidence of gene-nutrient interaction with apolipoprotein E polymorphisms. Am J Clin Nutr. 2008; 87(5): 1513–1520. https://doi.org/10.1093/ajcn/87.5.1513.
53. Pluijm S.M., Dik M.G., Jonker C., et al. Effects of gender and age on the association of apolipoprotein E epsilon4 with bone mineral density, bone turnover and the risk of fractures in older people. Osteoporos Int. 2002; 13(9): 701–709. https://doi.org/10.1007/s001980200096.
54. von Mühlen D.G., Barrett-Connor E., Schneider D.L., et al. Osteoporosis and apolipoprotein E genotype in older adults: the Rancho Bernardo study. Osteoporos Int. 2001; 12(4): 332–335. https://doi.org/10.1007/s001980170124.
55. Schoofs M.W., van der Klift M., Hofman A., van Duijn C.M., Stricker B.H., Pols H.A., Uitterlinden A.G. ApoE gene polymorphisms, BMD, and fracture risk in elderly men and women: the Rotterdam study. J Bone Miner Res. 2004 Sep; 19(9): 1490–1496. https://doi.org/10.1359/JBMR.040605.
56. Белая Ж.Е., Белова К.Ю., Бирюкова Е.В. и др. Федеральные клинические рекомендации по диагностике, лечению и профилактике остеопороза // Остеопороз и остеопатии. — 2021. — Т. 24 — №2 — C.4–47. https://doi.org/10.14341/osteo12930
57. Boonen S., Adachi J.D., Man Z., et al. Treatment with denosumab reduces the incidence of new vertebral and hip fractures in postmenopausal women at high risk. J Clin Endocrinol Metab. 2011; 96(6): 1727–1736. https://doi.org/10.1210/jc.2010-2784
58. Chotiyarnwong P., McCloskey E., Eastell R., et al. A Pooled Analysis of Fall Incidence From Placebo-Controlled Trials of Denosumab. J Bone Miner Res. 2020; 35(6): 1014–1021. DOI: 10.1002/jbmr.3972
59. Vandenbroucke A., Luyten F.P., Flamaing J., Gielen E. Pharmacological treatment of osteoporosis in the oldest old. Clin Interv Aging. 2017; 12: 1065–1077. https://doi.org/10.2147/CIA.S131023.
Рецензия
Для цитирования:
Чердак М.А., Дудинская Е.Н. Остеопороз и когнитивные расстройства у пожилых: есть ли связь? Российский журнал гериатрической медицины. 2022;(1):24-31. https://doi.org/10.37586/2686-8636-1-2022-24-31
For citation:
Cherdak M.A., Dudinskaya E.N. Osteoporosis and cognitive impairment in older adults: what is the link? Russian Journal of Geriatric Medicine. 2022;(1):24-31. (In Russ.) https://doi.org/10.37586/2686-8636-1-2022-24-31