СРАВНИТЕЛЬНЫЕ МЕТОДЫ ДИАГНОСТИКИ САРКОПЕНИИ В ГЕРИАТРИЧЕСКОЙ ПРАКТИКЕ

DOI: 10.37586/2686-8636-2-2025-161-163 УДК: 616.74

Тополянская С. В. $^{\bigcirc 1, 2*}$, Романова М. А. $^{\bigcirc 1}$, Кошурников Д. С. $^{\bigcirc 1}$, Пилярова М. Х. 1 , Бубман Л. И. $^{\bigcirc 1}$, Лыткина К. А. $^{\bigcirc 1}$, Мелик-Оганджанян Г. Ю. 1 , Мелконян Г. Г. $^{\bigcirc 1}$

- ¹ ГБУЗ «Госпиталь для ветеранов войн (ГВВ) №3 Департамента здравоохранения г. Москвы», Москва, Россия
- 2 ФГАОУ ВО «Первый МГМУ им. И. М. Сеченова Минздрава России (Сеченовский Университет)», Москва, Россия
- *Автор, ответственный за переписку, Тополянская Светлана Викторовна. E-mail: topolyanskayasv@zdrav.mos.ru

Резюме

АКТУАЛЬНОСТЬ. Одним из ключевых процессов, неизбежно сопровождающих старение, считают многообразные изменения состава тела. По мере старения компоненты тощей ткани (в частности, скелетные мышцы) сокращаются, тогда как содержание жировой ткани увеличивается. Прогрессирующая и генерализованная потеря массы скелетных мышц, а также их силы или функции (саркопения) приводит к различным неблагоприятным исходам, в том числе к инвалидности, ухудшению качества жизни и летальному исходу. Для скрининговой диагностики саркопении используют опросник SARC-F. Снижение мышечной массы определяют с помощью двухэнергетической рентгеновской абсорбциометрии или биоимпедансного анализа. Однако взаимозаменяемость этих методик требует уточнения.

ЦЕЛЬ ИССЛЕДОВАНИЯ. Изучение композиционного состава тела и сравнение методов диагностики саркопении у пациентов гериатрического стационара.

МАТЕРИАЛЫ И МЕТОДЫ. Данная работа — одномоментное исследование, в которое к настоящему времени включено 38 пациентов (29 женщин и 9 мужчин) в возрасте от 72 до 95 лет, находившихся на стационарном лечении в Московском городском гериатрическом центре. Средний возраст больных составил (83,1 ± 5,4) года. Композиционный состав тела анализировали методами двухэнергетической рентгеновской абсорбциометрии и биоимпедансного анализа. Применяли скрининг-опросник SARC-F для диагностики саркопении. Проводили комплексную гериатрическую оценку.

РЕЗУЛЬТАТЫ. Средние значения опросника SARC-F достигали (5,7 ± 2,6) (0-9) баллов. Зарегистрирована достоверная позитивная корреляция между значениями опросника SARC-F и возрастом пациентов (r = 0,35; р = 0,03), а также обратная корреляция с функциональной активностью пациентов, оцененной с помощью индекса Бартел базовой функциональной активности (r = -0,55; p = 0,0003) и шкалы IADL инструментальной функциональной активности (r = -0,51; p = 0,001). Установлена обратная корреляция между значениями опросника SARC-F и мышечной силой, оцененной с помощью динамометрии (r = -0,58; p = 0,0001), а также обратная корреляция с когнитивными способностями пациентов, оцененными с помощью теста Mini-Cog (r = -0,36; p = 0,02). Значимых взаимосвязей между показателями опросника SARC-F и всеми изученными параметрами биоимпедансометрии не обнаружено. Зарегистрирована достоверная обратная корреляция между значениями опросника SARC-F и общими абсолютными значениями минеральной плотности костной ткани по данным рентгеновской абсорбциометрии (r = -0.35; p = 0.03), Т-критерием в целом (r = -0.36; p = 0.02) и Z-критерием (r = -0.39; p = 0.01), минеральной плотностью костной ткани в нижних конечностях (r = -0.36; p = 0.02) и в ребрах (r = -0,37; р = 0,02). Наряду с этим установлена обратная корреляция между значениями опросника SARC-F и общей массой тощей ткани (r = -0,36; p = 0,02), а также массой тощей ткани в верхних конечностях (r = -0,33; p = 0,04). Зарегистрирована прямая корреляция между показателями SARC-F и отношением жира в нижних конечностях к общему содержанию жира (r = 0,49; p = 0,006). Содержание жидкости в организме по данным биоимпедансного анализа обратно коррелировало с общим содержанием жира в организме по данными рентгеновской абсорбциометрии (r = -0.6; p = 0.00000); содержанием жира в туловище (r = -0.62; p = 0.00006), в нижних конечностях (r = -0.44; p = 0.006), в верхних конечностях (r = -0.54; p = 0.0006); процентной долей жира в целом (r = -0.46; p = 0.004), долей жира в туловище (r = -0.46; p = 0.004), в нижних конечностях (r = -0.37; p = 0.004)p = 0,02) и в верхних конечностях (r = -0,4; p = 0,01). Процентная доля жира по данным биоимпедансометрии коррелировала с абсолютными значениями жировой ткани в целом по данным рентгеновской абсорбциометрии (r = 0,47; p = 0,003); содержанием жира в туловище (r = 0,49; p = 0,002), в нижних конечностях (r = 0,34; р = 0,03) и в верхних конечностях (r = 0,41; p = 0,01). Достоверных взаимосвязей между процентной долей жира по данным биоимпедансного анализа и рентгеновской абсорбциометрии не обнаружено. Мышечная масса по данным биоимпедансного анализа коррелировала со следующими показателями рентгеновской абсорбциометрии: минеральная плотность костной ткани в туловище (r = 0,43; p = 0,008), в костях таза (r = 0,44; p = 0,007) и в позвоночнике (r = 0,36; p = 0,02); общая масса тощей ткани (r = 0,45; p = 0,005); масса тощей ткани в туловище (r = 0.55; p = 0.0004), в нижних конечностях (r = 0.37; p = 0.02) и в верхних конечностях (r = 0.36; p = 0.002)р = 0,03). Зарегистрирована прямая корреляция между массой костной ткани по данным биоимпедансного анализа и следующими показателями рентгеновской абсорбциометрии: общая абсолютная минеральная плотность костной ткани (r = 0.34; p = 0.04); Т-критерий в целом (r = 0.33; p = 0.04); минеральная плотность костной ткани в верхних конечностях (r = 0,34; p = 0,04), в костях туловища (r = 0,45; p = 0,006), таза (r = 0,47; p = 0,003)

и позвоночника (r = 0.37; p = 0.02); содержание тощей ткани в целом (r = 0.44; p = 0.006), в туловище (r = 0.54; p=0,0006), в нижних конечностях (r=0,35; p=0,03) и в верхних конечностях (r=0,4; p=0,01). Наблюдалась обратная корреляция между возрастом пациентов и общей абсолютной минеральной плотностью костной ткани (r = -0.49; p = 0.001); Т-критерием в целом (r = -0.57; p = 0.0002); Z-критерием (r = -0.41; p = 0.01); минеральной плотностью в верхних (r = -0.4; p = 0.01) и нижних (r = -0.5; p = 0.001) конечностях, в туловище (r = -0.39; p = 0.01), ребрах (r = -0,36; p = 0,02) и костях таза (r = -0,45; p = 0,004); а также с общим содержанием жировой ткани (r = -0.34; p = 0.03) и массой жира (r = -0.35; p = 0.03) в туловище. Зарегистрированы прямые корреляции между мышечной силой, измеренной с помощью динамометрии, и следующими показателями: общая абсолютная минеральная плотность костной ткани (r = 0.49; p = 0.001); Т-критерий в целом (r = 0.41; p = 0.01); минеральная плотность костной ткани в верхних (r = 0.51; p = 0.001) и нижних (r = 0.48; p = 0.002) конечностях, ребрах (r = 0.41; p = 0.01), костях туловища (r = 0.49; p = 0.001), таза (r = 0.59; p = 0.0001) и позвоночника (r = 0.39; p = 0.001); а также с общим содержанием тощей ткани (r = 0,52; p = 0,0007); массой тощей ткани в туловище (r = 0,42; p = 0,009), в нижних (r = 0,5; p = 0,001) и верхних (r = 0,6; p = 0,00006) конечностях. Значимых корреляций между всеми показателями композиционного состава тела, проанализированного с помощью рентгеновской абсорбциометрии, и показателями функциональной активности по индексу Бартел и шкале IADL, выраженностью мальнутриции и риском падений в изученной группе больных не установлено.

ЗАКЛЮЧЕНИЕ. Полученные результаты свидетельствуют о возможности использования опросника SARC-F для диагностики старческой астении и саркопении, а биоимпедансного анализа — для изучения композиционного состава тела гериатрических пациентов. Однако наиболее точным методом анализа состава тела является двухэнергетическая рентгеновская абсорбциометрия.

Ключевые слова: саркопения; состав тела; двухэнергетическая рентгеновская абсорбциометрия; биоимпедансный анализ.

Для цитирования: Тополянская С. В., Романова М. А., Кошурников Д. С., Пилярова М. Х., Бубман Л. И., Лыткина К. А., Мелик-Оганджанян Г. Ю., Мелконян Г. Г. Сравнительные методы диагностики саркопении в гериатрической практике. *Российский журнал гериатрической медицины*. 2025; 2 (22): 161-163. DOI: 10.37586/2686-8636-2-2025-161-163

Поступила: 24.02.2025. Принята к печати: 25.02.2025. Дата онлайн-публикации: 05.05.2025

COMPARATIVE METHODS OF SARCOPENIA DIAGNOSTICS IN GERIATRIC PRACTICE

Topolyanskaya S. V. $^{\bigcirc 1, 2*}$, Romanova M. A. $^{\bigcirc 1}$, Koshurnikov D. S. $^{\bigcirc 1}$, Pilyarova M. Kh. , Bubman L. I. $^{\bigcirc 1}$, Lytkina K. A. $^{\bigcirc 1}$, Melik-Ogandzhanyan G. Yu. , Melkonyan G. G. $^{\bigcirc 1}$

- ¹ State Budgetary Healthcare Institution «Hospital for War Veterans No. 3 of the Moscow Department of Health», Moscow, Russia
- ² Federal State Autonomous Educational Institution of Higher Education «I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University) «, Moscow, Russia
- * Corresponding author: Topolyanskaya Svetlana Viktorovna. E-mail: topolyanskayasv@zdrav.mos.ru

Abstract

ACTUALITY. One of the key processes that inevitably accompany aging is considered to be a variety of changes in body composition. As we age, lean tissue components (in particular, skeletal muscles) decrease, while the content of adipose tissue increases. Progressive and generalized loss of skeletal muscle mass, strength or function (sarcopenia) leads to various adverse outcomes, including disability, deterioration in quality of life, and death. The SARC-F questionnaire is used for screening diagnostics of sarcopenia. A decrease in muscle mass is determined using dual-energy X-ray absorptiometry or bioimpedance analysis. However, the interchangeability of these methods requires clarification. STUDY OBJECTIVE. To investigate body composition and compare diagnostic methods for sarcopenia in geriatric

hospital patients. **MATERIALS AND METHODS.** This work is a cross-sectional study, which to date has enrolled 38 patients from 72 to 95 years (29 women and 9 men) who were undergoing inpatient treatment at the Moscow City Geriatric Center. The

to 95 years (29 women and 9 men) who were undergoing inpatient treatment at the Moscow City Geriatric Center. The mean age of patients was (83.1 \pm 5.4) years. Body composition was analyzed using dual-energy X-ray absorptiometry and bioimpedance analysis. The SARC-F screening questionnaire was used to diagnose sarcopenia. A comprehensive geriatric assessment was performed.

RESULTS. The mean values of the SARC-F questionnaire reached (5.7 ± 2.6) (0-9) points. A significant positive correlation was registered between the SARC-F questionnaire values and the patients' age (r = 0.35; p = 0.03), as well as an inverse correlation with the patients' functional activity assessed using the Barthel Index of Basic Functional Activity (r = -0.55; p = 0.0003) and the IADL Instrumental Functional Activity Scale (r = -0.51; p = 0.001). An inverse correlation was established between the SARC-F questionnaire values and muscle strength assessed using dynamometry (r = -0.58; p = 0.0001), as well as an inverse correlation with the patients' cognitive abilities assessed

using the Mini-Cog test (r = -0.36; p = 0.02). No significant relationships were found between the SARC-F questionnaire values and any of the investigated bioimpedance parameters. A significant inverse correlation was recorded between the SARC-F questionnaire values and: total absolute values of bone mineral density according to X-ray absorptiometry data (r = -0.35; p = 0.03), overall T-score (r = -0.36; p = 0.02) and Z-score (r = -0.39; p = 0.01), bone mineral density in the lower limbs (r = -0.36; p = 0.02) and in the ribs (r = -0.37; p = 0.02). Along with this, an inverse correlation was established between the SARC-F questionnaire values and total lean tissue mass (r = -0.36; p = 0.02), as well as lean tissue in the upper limbs (r = -0.33; p = 0.04). A direct correlation was recorded between SARC-F scores and the ratio of lower limb fat to total fat content (r = 0.49; p = 0.006). Body water content as measured by bioimpedance analysis was inversely correlated with total body fat content as measured by X-ray absorptiometry (r = -0.6; p = 0.00000), body fat content in the trunk (r = -0.62; p = 0.00006), lower limbs (r = -0.44; p = 0.006), upper limbs (r = -0.54; p = 0.0006), percentage of total body fat (r = -0.46; p = 0.004), percentage of body fat in the trunk (r = -0.46; p = 0.004), lower limbs (r = -0.37; p = 0.02) and upper limbs (r = -0.4; p = 0.01). The percentage of fat according to bioimpedance analysis correlated with absolute values of total adipose tissue according to X-ray absorptiometry (r = 0.47; p = 0.003), fat content in the trunk (r = 0.49; p = 0.002), fat in the lower extremities (r = 0.34; p = 0.03) and in the upper extremities (r = 0.41; p = 0.01). No significant relationships were found between the percentage of fat according to bioimpedance analysis and X-ray absorptiometry. Muscle mass, according to bioimpedance analysis, correlated with the following X-ray absorptiometry parameters: bone mineral density in the trunk (r = 0.43; p = 0.008), pelvic bones (r = 0.44; p = 0.007) and spine (r = 0.36; p = 0.02), with total lean tissue mass (r = 0.45; p = 0.005), lean tissue mass in the trunk (r = 0.55; p = 0.0004), lower (r = 0.37; p = 0.02) and upper limbs (r = 0.36; p = 0.03). A direct correlation was found between bone mass as measured by bioimpedance analysis and the following X-ray absorptiometry parameters: total absolute bone mineral density (r = 0.34; p = 0.04), overall T-score (r = 0.33; p = 0.04), bone mineral density in the upper limbs (r = 0.34; p = 0.04), in the bones of the trunk (r = 0.45; p = 0.006), pelvis (r = 0.47; p = 0.003) and spine (r = 0.37; p = 0.02), as well as with the content of lean tissue in general (r = 0.44; p = 0.006), lean tissue in the trunk (r = 0.54; p = 0.0006), in the lower (r = 0.35; p = 0.03) and in the upper limbs. (r = 0.4; p = 0.01). There was an inverse correlation between patient age and total absolute bone mineral density (r = -0.49; p = 0.001), overall T-score (r = -0.57; p = 0.0002), Z-score (r = -0.41; p = 0.01), bone mineral density in the upper (r = -0.4; p = 0.01) and lower extremities (r = -0.5; p = 0.001), trunk (r = -0.39; p = 0.01), ribs (r = -0.36; p = 0.02) and pelvic bones (r = -0.45; p = 0.004), as well as an inverse correlation with total body fat (r = -0.34; p = 0.03) and trunk fat mass (r = -0.35; p = 0.03). Direct correlations were found between muscle strength measured by dynamometry and the following parameters: total absolute bone mineral density (r = 0.49; p = 0.001), overall T-score (r = 0.41; p = 0.01), bone mineral density in the upper (r = 0.51; p = 0.001) and lower extremities (r = 0.48; p = 0.002), ribs (r = 0.41; p = 0.01), bones of the trunk (r = 0.49; p = 0.001), pelvis (r = 0.59; p = 0.0001) and spine (r = 0.39; p = 0.01), as well as with the total content of lean tissue (r = 0.52; p = 0.0007), lean tissue mass in the trunk (r = 0.42; p = 0.009), in the lower (r = 0.5; p = 0.001) and upper limbs (r = 0.6; p = 0.00006). No significant correlations were found between all body composition parameters analyzed by X-ray absorptiometry and functional activity indices according to the Barthel index and IADL scale, severity of malnutrition and risk of falls in the studied group of patients.

CONCLUSION. The study results indicate the possible use of the SARC-F questionnaire for diagnosing frailty and sarcopenia, and bioimpedance analysis for studying body composition in geriatric patients. However, the most accurate method for body composition analysis is dual-energy X-ray absorptiometry.

Keywords: sarcopenia; body composition; dual-energy X-ray absorptiometry; bioimpedance analysis.

For citation: Topolyanskaya S. V., Romanova M. A., Koshurnikov D. S., Pilyarova M. Kh., Bubman L. I., Lytkina K. A., Melik-Ogandzhanyan G. Yu., Melkonyan G. G. Comparative methods of sarcopenia diagnostics in geriatric practice. Russian Journal of Geriatric Medicine. 2025; 2 (22): 161-163. DOI: 10.37586/2686-8636-2-2025-161-163

Received: 24.02.2025. Accepted: 25.02.2025. Published online: 05.05.2025

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ / ADDITIONAL INFORMATION

Финансирование. Исследование не имело спонсорской поддержки.

Funding Sources: This study had no external funding sources.

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.

Conflict of Interests. The authors declare no conflicts of interest.

Вклад авторов. Все авторы в равной степени участвовали в разработке концепции статьи, получении и анализе фактических данных, написании и редактировании текста статьи, проверке и утверждении текста статьи.

Author contribution. All authors according to the ICMJE criteria participated in the development of the concept of the article, obtaining and analyzing factual data, writing and editing the text of the article, checking and ap-proving the text of the article.

ORCID ABTOPOB:

Тополянская С.В./Topolyanskaya S.V.—0000-0002-4131-8432 Романова М. А. / Romanova M. A. — 0000-0001-5351-1996 Кошурников Д. С. / Koshurnikov D. S. — 0000-0002-7024-9560 Бубман Л. И. / Bubman L. I. — 0000-0002-4195-3188 Лыткина К. А. / Lytkina K. А. — 0000-0001-9647-7492 Мелконян Г. Г. / Melkonyan G. G. — 0000-0002-4021-5044